EXPONENTIAL SEQUENCE IN THE OPERATIONAL CALCULUS MODEL FOR THE $n^{T H}-O R D E R$ FORWARD DIFFERENCE

Hubert Wysocki ${ }^{\text {© }}$

Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69 Str., 81-127
Gdynia, Poland; e-mail: h.wysocki@amw.gdynia.pl; ORCID ID 0000-0003-4487-8555

Abstract

In the paper, there has been determined an exponential element in the discrete model of the nonclassical Bittner operational calculus for the $n^{\text {th }}$-order forward difference.

Key words:
operational calculus, derivative, integrals, limit conditions, forward difference, exponential sequence.

Research article

FOUNDATIONS OF THE BITTNER OPERATIONAL CALCULUS

The Bittner operational calculus [1-4] is a system

$$
\begin{equation*}
C O\left(L^{0}, L^{1}, S, T_{q}, s_{q}, Q\right) \tag{1}
\end{equation*}
$$

where L^{0} and L^{1} are linear spaces (over the same scalar field Γ) such that $L^{1} \subset L^{0}$. A linear operation $S: L^{1} \longrightarrow L^{0}$ (denoted as $S \in \mathscr{L}\left(L^{1}, L^{0}\right)$), called a derivative, is a surjection. Moreover, Q is a set of indices q for the operations $T_{q} \in \mathscr{L}\left(L^{0}, L^{1}\right)$ and $s_{q} \in \mathscr{L}\left(L^{1}, L^{1}\right)$ such that $S T_{q} f=f, f \in L^{0}$ and $s_{q} x=x-T_{q} S x, x \in L^{1} . T_{q}$ and s_{q} are called integrals and limit conditions, respectively. The kernel of S, i.e. $\operatorname{Ker} S$ is called a set of constants for the derivative S. It easy to check that the limit conditions s_{q} are projections of L^{1} onto the subspace $\operatorname{Ker} S$.

The condition $L^{1} \subset L^{0}$ enables iterating of integrals. In order to create derivatives of higher orders, using induction, we determine in turn a sequence of spaces $L^{n}, n \in \mathbb{N}^{1}$ in such a way that

$$
L^{n}:=\left\{x \in L^{n-1}: S x \in L^{n-1}\right\} .
$$

Then

$$
\ldots \subset L^{n} \subset L^{n-1} \subset \ldots \subset L^{1} \subset L^{0}
$$

and

$$
S^{n}\left(L^{m+n}\right)=L^{m},
$$

where

$$
\mathscr{L}\left(L^{n}, L^{0}\right) \ni S^{n}:=\underbrace{S \circ S \circ \ldots \circ S}_{n \text {-times }}, \quad m \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, n \in \mathbb{N} .
$$

Assume that the only solution to an equation

$$
\begin{equation*}
S x=\lambda x, \quad \lambda \in \Gamma \tag{2}
\end{equation*}
$$

with a limit condition

$$
s_{q} x=0
$$

is $x=0$.

[^0]If the equation (2) with a limit condition

$$
\begin{equation*}
s_{q} x=c, \quad c \in \operatorname{Ker} S \tag{3}
\end{equation*}
$$

has a solution for $c \neq 0$, then we call it an exponential element (with a λ-exponent) and denote it as $\exp (\lambda, q, c)$.

It is easy to notice that the exponential element is uniquely determined and $\exp (0, q, c)=c$.

If we define the objects (1), then we mean a representation or a model of the operational calculus.

OPERATIONAL CALCULUS MODELS FOR THE FORWARD DIFFERENCE

Let $\Gamma:=\mathbb{C}$ be a field of complexes and $L^{0}=L^{1}:=C\left(\mathbb{N}_{0}, \mathbb{C}\right)$ be a linear space of complex sequences $x=\{x(k)\}_{k \in \mathbb{N}_{0}}{ }^{2}$ with a usual sequences addition and sequences multiplication by complex numbers.

In $[1,2,4]$ Bittner considered a discrete representation of the operational calculus with a derivative understood as a forward difference Δ, i.e.

$$
S_{\Delta} x \equiv \Delta x:=\{x(k+1)-x(k)\},
$$

to which there corresponds one integral

$$
T_{\Delta, 0} x:=\left\{\begin{array}{cll}
0 & \text { for } & k=0 \\
\sum_{i=0}^{k-1} x(i) & \text { for } & k>0
\end{array} \quad, \quad k \in \mathbb{N}_{0}\right.
$$

and one limit condition

$$
s_{\Delta, 0} x:=\{x(0)\}
$$

Later there appeared, officially mentioned in [5], a model with integrals

$$
T_{\Delta, k_{0}} x:=\left\{\begin{array}{rl}
-\sum_{i=k}^{k_{0}-1} x(i) & \text { for } \quad k<k_{0} \\
0 & \text { for } \quad k=k_{0} \\
\sum_{i=k_{0}}^{k-1} x(i) & \text { for } \quad k>k_{0}
\end{array}, \quad k \in \mathbb{N}_{0}\right.
$$

[^1]and limit conditions
$$
s_{\Delta, k_{0}} x:=\left\{x\left(k_{0}\right)\right\},
$$
where $k_{0} \equiv q \in Q:=\mathbb{N}_{0}$. This model was generalized in [6], where it was proved that to the so-called forward difference with the base $b=\{b(k)\}$
$$
S_{\Delta_{b}} x \equiv \Delta_{b} x:=\{x(k+1)-b(k) x(k)\}^{3}
$$
there correspond the below integrals
$$
T_{\Delta_{b}, k_{0}} x=\{e(k)\} T_{\Delta, k_{0}}\left\{\frac{x(k)}{e(k+1)}\right\}
$$
and limit conditions
$$
s_{\Delta_{b}, k_{0}} x=\left\{\frac{e(k)}{e\left(k_{0}\right)}\right\} s_{\Delta, k_{0}}\{x(k)\},
$$
where $e(k):=\prod_{i=0}^{k-1} b(i), e(0):=1$.
Another generalization of the models considered in this paper was done in [9]. It was shown that to the $n^{\text {th }}$-order forward difference
\[

$$
\begin{equation*}
S_{\Delta_{n}} x \equiv \Delta_{n} x:=\{x(k+n)-x(k)\}, \tag{4}
\end{equation*}
$$

\]

where n is a given natural number, there correspond integrals

$$
\begin{equation*}
T_{\Delta_{n}, k_{0}} x:=\left\{\frac{1}{n} \sum_{j=0}^{n-1}\left[\sum_{i=0}^{k-1} \varepsilon_{j}^{k-i} x(i)-\sum_{i=0}^{k_{0}-1} \varepsilon_{j}^{k-i} x(i)\right]\right\} \tag{5}
\end{equation*}
$$

and limit conditions

$$
\begin{equation*}
s_{\Delta_{n}, k_{0}} x:=\left\{\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=k_{0}}^{k_{0}+n-1} \varepsilon_{j}^{k-i} x(i)\right\}, \tag{6}
\end{equation*}
$$

where

$$
\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n-1}
$$

are $n^{\text {th }}$ roots of unity, i.e.

$$
\varepsilon_{j}=\cos \frac{2 j \pi}{n}+\mathrm{i} \sin \frac{2 j \pi}{n}, \quad j \in \overline{0, n-1}:=\{0,1, \ldots, n-1\},
$$

while ' i ' denotes the imaginary unit.

[^2]It was also shown that the operations

$$
\begin{equation*}
S_{\Delta_{b, n}} x \equiv \Delta_{b, n} x:=\{x(k+n)-b x(k)\}^{4} \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
T_{\Delta_{b, n}, k_{0}} x & :=\{e(k)\} T_{\Delta_{n}, k_{0}}\left\{\frac{x(k)}{e(k+n)}\right\}, \tag{8}\\
s_{\Delta_{b, n}, k_{0}} x & :=\{e(k)\} s_{\Delta_{n}, k_{0}}\left\{\frac{x(k)}{e(k)}\right\}, \tag{9}
\end{align*}
$$

where

$$
\{e(k)\}:=\left\{b^{\frac{k}{n}}\right\} \in \operatorname{Ker} S_{\Delta_{b, n}},
$$

satisfy the fundamental operational calculus formulas, i.e.

$$
S_{\Delta_{b, n}} T_{\Delta_{b, n}, k_{0}} x=x, \quad T_{\Delta_{b, n}, k_{0}} S_{\Delta_{b, n}} x=x-s_{\Delta_{b, n}, k_{0}} x
$$

It is easy to verify that a solution to the Cauchy problem

$$
\begin{gather*}
x(k+1)-x(k)=\lambda x(k), \quad \lambda \in \mathbb{C} \backslash\{-1\} \\
x\left(k_{0}\right)=c_{k_{0}}, \quad c_{k_{0}} \in \mathbb{C} \backslash\{0\}
\end{gathered} \Longleftrightarrow \begin{gathered}
S_{\Delta} x=\lambda x \tag{10}\\
s_{\Delta, k_{0}} x=c \equiv\left\{c_{k_{0}}\right\}
\end{gather*}
$$

is the sequence $x \equiv\left\{\exp _{\Delta}\left(\lambda, k_{0}, c\right)(k)\right\}=\left\{(1+\lambda)^{k-k_{0}} c_{k_{0}}\right\}$, which is an exponential element for the forward difference S_{Δ} (cf. [4]).

A generalization of (10) is an initial value problem

$$
\begin{align*}
& x(k+n)-b x(k)=\lambda x(k), \quad \lambda \in \mathbb{C} \backslash\{-b\} \tag{11}\\
& x\left(k_{0}+\ell\right)=c_{k_{0}+\ell}, \quad c_{k_{0}+\ell} \in \mathbb{C}, \ell \in \overline{0, n-1}, \tag{12}
\end{align*}
$$

where $\left|c_{k_{0}}\right|+\left|c_{k_{0}+1}\right|+\ldots+\left|c_{k_{0}+n-1}\right|>0$.
The above IVP defines an exponential element in the model with the forward difference (7).

EXPONENTIAL ELEMENT FOR A HIGHER ORDER FORWARD DIFFERENCE

We shall prove that the sequence

$$
\begin{equation*}
x=\{x(k)\}=\left\{\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=k_{0}}^{k_{0}+n-1} \varepsilon_{j}^{k-i}(b+\lambda)^{\frac{k-i}{n}} c_{i}\right\} \tag{13}
\end{equation*}
$$

is a solution to the equation (11) and that it satisfies the initial conditions (12).
${ }^{4} b \neq 0$ is a given complex number.
2 (217) 2019

Since $\varepsilon_{j}^{k+n-i}=\varepsilon_{j}^{k-i}$ for $j \in \overline{0, n-1}$ and $i, k \in \mathbb{N}_{0}$, hence for each $k \in \mathbb{N}_{0}$ we obtain

$$
x(k+n)=\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=k_{0}}^{k_{0}+n-1} \varepsilon_{j}^{k-i}(b+\lambda)(b+\lambda)^{\frac{k-i}{n}} c_{i}=(b+\lambda) x(k)
$$

which means that (13) is a solution to (11).
As

$$
\varepsilon_{0}^{k_{0}+\ell-i}+\varepsilon_{1}^{k_{0}+\ell-i}+\cdots+\varepsilon_{n-1}^{k_{0}+\ell-i}=0
$$

for $i \neq k_{0}+\ell$, where $i \in \overline{k_{0}, k_{0}+n-1}$ and $\ell \in \overline{0, n-1}$, so

$$
\begin{aligned}
& x\left(k_{0}+\ell\right)=\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=k_{0}}^{k_{0}+n-1} \varepsilon_{j}^{k_{0}+\ell-i}(b+\lambda)^{\frac{k_{0}+\ell-i}{n}} c_{i} \\
&=\frac{1}{n} \sum_{j=0}^{n-1}\left(c_{k_{0}+\ell}+\sum_{\substack{i=k_{0} \\
i \neq k_{0}+\ell}}^{k_{0}+n-1} \varepsilon_{j}^{k_{0}+\ell-i}(b+\lambda)^{\frac{k_{0}+\ell-i}{n}} c_{i}\right) \\
&=c_{k_{0}+\ell}+\frac{1}{n} \sum_{\substack{i=k_{0} \\
i \neq k_{0}+\ell}}^{k_{0}+n-1}\left(\varepsilon_{0}^{k_{0}+\ell-i}+\varepsilon_{1}^{k_{0}+\ell-i}+\cdots+\varepsilon_{n-1}^{k_{0}+\ell-i}\right)(b+\lambda)^{\frac{k_{0}+\ell-i}{n}} c_{i}=c_{k_{0}+\ell}
\end{aligned}
$$

which signifies that (13) satisfies the initial conditions (12).
Hence, from (12), on the basis of (9) and (6), there follows a limit condition

$$
\begin{equation*}
s_{\Delta_{b, n}, k_{0}} x=\left\{\frac{b^{\frac{k}{n}}}{n} \sum_{j=0}^{n-1} \sum_{i=k_{0}}^{k_{0}+n-1} \varepsilon_{j}^{k-i} b^{\frac{-i}{n}} c_{i}\right\}=:\{c(k)\}=c \in \operatorname{Ker} S_{\Delta_{b, n}} . \tag{14}
\end{equation*}
$$

From (14), we get in turn the initial conditions (12), because

$$
\begin{aligned}
c\left(k_{0}+\ell\right) & =\frac{b^{\frac{k_{0}+\ell}{n}}}{n} \sum_{j=0}^{n-1} \sum_{i=k_{0}}^{k_{0}+n-1} \varepsilon_{j}^{k_{0}+\ell-i} b^{\frac{-i}{n}} c_{i}=\frac{b^{\frac{k_{0}+\ell}{n}}}{n} \sum_{j=0}^{n-1}\left(b^{-\frac{k_{0}+\ell}{n}} c_{k_{0}+\ell}+\sum_{\substack{i=k_{0} \\
i \neq k_{0}+\ell}}^{k_{0}+n-1} \varepsilon_{j}^{k_{0}+\ell-i} b^{\frac{-i}{n}} c_{i}\right) \\
& =c_{k_{0}+\ell}+\frac{b^{\frac{k_{0}+\ell}{n}}}{n} \sum_{\substack{i=k_{0} \\
i \neq k_{0}+\ell}}^{k_{0}+n-1}\left(\varepsilon_{0}^{k_{0}+\ell-i}+\varepsilon_{1}^{k_{0}+\ell-i}+\cdots+\varepsilon_{n-1}^{k_{0}+\ell-i}\right) b^{\frac{-i}{n}} c_{i}=c_{k_{0}+\ell .}
\end{aligned}
$$

Therefore, the conditions (12),(14) are equivalent.
Thus, we have shown that the sequence $x \equiv\left\{\exp _{\Delta_{b, n}}\left(\lambda, k_{0}, c\right)(k)\right\}$ given by (13) is an exponential element in the operational calculus model with the derivative $S_{\Delta_{b, n}}$

The sequence (13) is determined by the limit condition (14) or the initial conditions (12).

An arbitrary constant $c=\{c(k)\} \in \operatorname{Ker} S_{\Delta_{b, n}}$ shall be called a (b, n)-periodic sequence.
So, for a given (b, n)-periodic sequence we have

$$
c(k+n)=b c(k), \quad k \in \mathbb{N}_{0} .
$$

If we present the (b, n)-periodic sequence as

$$
c(k)=b^{\frac{k}{n}} \tilde{c}(k), \quad k \in \mathbb{N}_{0},
$$

then $\{\tilde{c}(k)\}$ must be an n-periodic $\left((1, n)\right.$-periodic) sequence, i.e. $\{\tilde{c}(k)\} \in \operatorname{Ker} S_{\Delta_{n}}$.
Therefore, (b, n)-periodic sequences take the form of

$$
\begin{equation*}
c=\{c(k)\}=\left\{b^{\frac{k}{n}}\left(a_{0} \varepsilon_{0}^{k}+a_{1} \varepsilon_{1}^{k}+\cdots+a_{n-1} \varepsilon_{n-1}^{k}\right)\right\} \tag{15}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n-1}$ are arbitrary complexes.
An exponential element $x=\left\{\exp _{\Delta_{b, n}}\left(\lambda, k_{0}, c\right)(k)\right\}$, where a constant c is of the form (15), constitutes a solution to the problem (11),(12) with initial conditions

$$
x\left(k_{0}+\ell\right)=c\left(k_{0}+\ell\right)=b^{\frac{k_{0}+\ell}{n}}\left(a_{0} \varepsilon_{0}^{k_{0}+\ell}+a_{1} \varepsilon_{1}^{k_{0}+\ell}+\cdots+a_{n-1} \varepsilon_{n-1}^{k_{0}+\ell}\right), \quad \ell \in \overline{0, n-1}
$$

An exponential element is a $(b+\lambda, n)$-periodic sequence.

Example 1.

Let us consider an operational calculus model with the difference $\Delta_{n} \equiv \Delta_{1, n}$ where n is a given natural number. Let us also assume that with $k_{0}=0$, the initial conditions (12) take the form of

$$
c_{\ell}=n, \quad \ell \in \overline{0, n-1}
$$

Then, the limit condition (14) is a constant sequence

$$
c=\{n\},
$$

which can be identified with the number n.
Hence, on the basis of (13), for $\lambda=1$ and $n=1,2,3$ we specifically get exponential sequences

$$
\begin{gathered}
\left\{\exp _{\Delta_{1}}(1,0,1)(k)\right\}=\left\{2^{k}\right\}=\{1,2,4,8,16, \ldots\} \\
\left\{\exp _{\Delta_{2}}(1,0,2)(k)\right\}=\left\{2^{\frac{k-1}{2}}\left(1+\sqrt{2}+(-1)^{k}(-1+\sqrt{2})\right)\right\}=\{2,2,4,4,8,8,16,16,32,32, \ldots\}
\end{gathered}
$$

$$
\begin{aligned}
\left\{\exp _{\Delta_{3}}(1,0,3)(k)\right\} & =\left\{2 ^ { \frac { k - 2 } { 3 } } \left(1+\sqrt[3]{2}+\sqrt[3]{4}+(-1+\sqrt[3]{2})(1+2 \sqrt[3]{2}) \cos \frac{2 k \pi}{3}\right.\right. \\
& \left.\left.+\sqrt{3}(-1+\sqrt[3]{2}) \sin \frac{2 k \pi}{3}\right)\right\} \\
& =\{3,3,3,6,6,6,12,12,12,24,24,24,48,48,48,96,96,96, \ldots\}
\end{aligned}
$$

whose graphs are presented in fig. 1 below.
It is easy to notice that for any $n \in \mathbb{N}_{0}$ we have

$$
\left\{\exp _{\Delta_{n}}(1,0, n)(k)\right\}=\left\{n \cdot 2^{\lfloor k / n\rfloor}\right\},
$$

where $\lfloor r\rfloor$ denotes an integer part (floor) of the number $r \in \mathbb{R}$.

Fig. 1. Graphs of the exponential sequence $\left\{\exp _{\Delta_{n}}(1,0, n)(k)\right\}$ for $n=1,2,3$

EXPONENTIAL ELEMENT IN A SPACE OF RESULTS

The problem (11),(12) can be presented as

$$
\begin{align*}
& S_{\Delta_{b, n}} x=\lambda x \tag{16}\\
& s_{\Delta_{b, n}, k_{0}} x=c, \tag{17}
\end{align*}
$$

where the constant $c \in \operatorname{Ker} S_{\Delta_{b, n}}$ has the form of (14).

The problem (16), (17) is equivalent to an integral equation

$$
\begin{equation*}
\left(I-\lambda T_{\Delta_{b, n}, k_{0}}\right) x=c, \tag{18}
\end{equation*}
$$

where I means the identity operation defined on $L^{0}=C\left(\mathbb{N}_{0}, \mathbb{C}\right)$.
Since for $c=0$ we get $x=0$, then the operation $I-\lambda T_{\Delta_{b, n}, k_{0}}$ is an injection. It is easy to check that $T_{\Delta_{b, n}, k_{0}}$ is also an injection.

Let $\pi\left(L^{0}\right)$ be a multiplicative semigroup of injective endomorphisms of L^{0}, which is generated (for a given $k_{0} \in \mathbb{N}_{0}$) by the operations $T_{\Delta_{b, n}, k_{0}}$ and $I-\lambda T_{\Delta_{b, n}, k_{0}}$ for any $\lambda \in \mathbb{C} \backslash\{-b\}$.

It is obvious that the semigroup $\pi\left(L^{0}\right)$ is commutative.
Let us consider ordered pairs

$$
\xi:=[x, U], \quad x \in L^{0}, U \in \pi\left(L^{0}\right)
$$

and the equality relation

$$
([x, U]=[y, V]) \stackrel{\text { def }}{\Longleftrightarrow}(V x=U y), \quad x, y \in L^{0}, U, V \in \pi\left(L^{0}\right),
$$

which is of equivalence type.
This relation divides the set of all considered pairs into equivalence classes, which are called results $[2,4]$.

A result is also an arbitrary representative ξ of a given class. For such a representative the fraction symbol

$$
\xi=\frac{x}{U}
$$

is used.
The set of results $\Xi\left(L^{0}, \pi\left(L^{0}\right)\right)$, together with the operations

$$
\frac{x}{U}+\frac{y}{V}:=\frac{V x+U y}{U V}, \quad \gamma\left(\frac{x}{U}\right):=\frac{\gamma x}{U}, \quad x, y \in L^{0}, \gamma \in \Gamma, U, V \in \pi\left(L^{0}\right)
$$

constitutes a linear space over the field Γ of complexes \mathbb{C}.
The sequences of L^{0} can be treated as results, since

$$
x \longmapsto \frac{U x}{U}, x=\{x(k)\} \in L^{0}, U \in \pi\left(L^{0}\right)
$$

is an isomorphism.

It is not difficult to verify that the results of the form

$$
\frac{c}{T_{\Delta_{b, n}, k_{0}}}
$$

do not belong to L^{0} for each $c \in \operatorname{Ker} S_{\Delta_{b, n}} \backslash\{0\}[4]$.
From this it follows that $\Xi\left(L^{0}, \pi\left(L^{0}\right)\right) \backslash L^{0}$ is a nonempty set.
The elements $\xi \in L^{0}$ and $\xi \in \Xi\left(L^{0}, \pi\left(L^{0}\right)\right) \backslash L^{0}$ are called a regular result and a singular result, respectively [8].

Let R be an endomorphism of L^{0} commutative with the operations from the semigroup $\pi\left(L^{0}\right)$. The operation

$$
\rho\left(\frac{x}{V}\right):=\frac{R x}{U V}, \quad x \in L^{0}, U, V \in \pi\left(L^{0}\right)
$$

is called an operator and denoted as $\rho \equiv \frac{R}{U}[2,4]$.
Thus, an operator is the endomorphism of the results' space $\Xi\left(L^{0}, \pi\left(L^{0}\right)\right)$. The operator $\rho_{0}:=\frac{U R}{U}$, where $U \in \pi\left(L^{0}\right)$, is identified with the endomorphism R.

An operator given by the formula

$$
p_{k_{0}} \equiv P_{\Delta_{b, n}, k_{0}}:=\frac{I}{T_{\Delta_{b, n}, k_{0}}}
$$

is called the Heaviside operator [4].
From (18) we obtain a form of an exponential element as a result

$$
x=\frac{c}{I-\lambda T_{\Delta_{b, n}, k_{0}}} .
$$

It is a regular result, which can also be presented as

$$
\begin{equation*}
\left\{\exp _{\Delta_{b, n}}\left(\lambda, k_{0}, c\right)(k)\right\}=\frac{p_{k_{0}}}{p_{k_{0}}-\lambda I}\{c(k)\} . \tag{19}
\end{equation*}
$$

Example 2.

Using Mathematica ${ }^{\circledR}$, we shall solve the IVP

$$
\begin{gather*}
x(k+6)+6 x(k+3)-16 x(k)=0, \quad k \in \mathbb{N}_{0} \tag{20}\\
x(0)=1, x(1)=0, x(2)=0, x(3)=1, x(4)=0, x(5)=-1 . \tag{21}
\end{gather*}
$$

A. Applying the following code

```
sol=RSolve[{y[k+6]+6y[k+3]-16y[k]==0,y[0]==1,y[1]==0,y[2]==0,
y[3]==1,y[4]==0,y[5]==-1},y[k],k];
x[k]:=y[k]/.Flatten[sol];
FullSimplify[ComplexExpand[x[k]]]
Table[FullSimplify[x[k]],{k,0,20}]
```

we get a solution to the considered problem:

$$
\begin{gather*}
x(k)=\frac{1}{15} \cdot 2^{(k-11) / 3}\left[4\left(9 \cdot 2^{2 / 3}-1+\sqrt{3} \sin \frac{2 k \pi}{3}+\left(1+18 \cdot 2^{2 / 3}\right) \cos \frac{2 k \pi}{3}\right)\right. \\
\left.+2^{2(k+1) / 3}\left(5 \cdot(-1)^{k}+\sqrt{3} \sin \frac{k \pi}{3}+7 \cos \frac{k \pi}{3}\right)\right], \quad k \in \mathbb{N}_{0} \tag{22}
\end{gather*}
$$

as well as its consecutive terms for $k \in \overline{0,20}$:

$$
1,0,0,1,0,-1,10,0,6,-44,0,-52,424,0,408,-3248,0,-3280,26272,0,26208
$$

B. We shall now determine a solution to the problem (20),(21) in a respective results' space using Mathematica ${ }^{\circledR}$ for all auxiliary calculations.

If we present the equation (20) as

$$
(x(k+6)-2 x(k+3)+x(k))+8(x(k+3)-x(k))-9 x(k)=0, \quad k \in \mathbb{N}_{0}
$$

we can solve the problem in a model with the derivative

$$
S x \equiv S_{\Delta_{3}} x=\{x(k+3)-x(k)\} .
$$

Then, instead of (20), we get

$$
\begin{equation*}
S^{2} x+8 S x-9 x=0 \tag{23}
\end{equation*}
$$

where $x=\{x(k)\}$.
To the initial conditions (21), on the basis of (6) and with $k_{0}=0$, there correspond in turn the limit conditions

$$
\begin{align*}
s_{0} x \equiv c=\left\{\frac{1}{3}\left(\varepsilon_{0}^{k}+\varepsilon_{1}^{k}+\varepsilon_{2}^{k}\right)\right\} & =\{1,0,0,1,0,0, \ldots\} \\
& =\left\{\begin{array}{rl}
1 & \text { for } k=3 m \\
0 & \text { for } k \neq 3 m
\end{array}, m \in \mathbb{N}_{0},\right. \tag{24}\\
s_{0} S x \equiv d=\left\{-\frac{1}{3}\left(\varepsilon_{0}^{k-2}+\varepsilon_{1}^{k-2}+\varepsilon_{2}^{k-2}\right)\right\} & =\{0,0,-1,0,0,-1, \ldots\} \\
& =\left\{\begin{array}{rrr}
-1 & \text { for } & k=3 m+2 \\
0 & \text { for } & k \neq 3 m+2
\end{array}, m \in \mathbb{N}_{0},\right. \tag{25}
\end{align*}
$$

where s_{0} means $s_{\Delta_{3}, 0}$ and
2 (217) 2019

$$
\varepsilon_{0}=1, \varepsilon_{1}=-\frac{1}{2}+\frac{\mathrm{i} \sqrt{3}}{2}, \varepsilon_{2}=-\frac{1}{2}-\frac{\mathrm{i} \sqrt{3}}{2} .
$$

If T_{0} means the integral (5) for $k_{0}=0$, then the problem (23)-(25) is equivalent to the equation

$$
x+8 T_{0} x-9 T_{0}^{2} x=c+8 T_{0} c+T_{0} d
$$

that is

$$
\begin{equation*}
\left(I+9 T_{0}\right)\left(I-T_{0}\right) x=\left(I+8 T_{0}\right) c+T_{0} d \tag{26}
\end{equation*}
$$

Let the results' space $\Xi\left(L^{0}, \pi\left(L^{0}\right)\right)$ be determined by the space $L^{0}=C\left(\mathbb{N}_{0}, \mathbb{C}\right)$ and the semigroup $\pi\left(L^{0}\right)$ containing the operations

$$
T_{0}, I+9 T_{0}, I-T_{0}
$$

In $\Xi\left(L^{0}, \pi\left(L^{0}\right)\right)$ a solution to the equation (26) is the result

$$
x=\frac{\left(I+8 T_{0}\right) c+T_{0} d}{\left(I+9 T_{0}\right)\left(I-T_{0}\right)}
$$

that is

$$
x=\frac{1}{10}\left(\frac{p_{0}}{p_{0}+9 I}(c-d)+\frac{p_{0}}{p_{0}-I}(9 c+d)\right) .
$$

It is a regular result, because on the basis of (19) we obtain

$$
x(k)=\frac{1}{10}\left(\exp _{\Delta_{3}}(-9,0, c-d)(k)+\exp _{\Delta_{3}}(1,0,9 c+d)(k)\right), \quad k \in \mathbb{N}_{0}
$$

Using the form (13) of the exponential element, we also have

$$
\begin{gather*}
x(k)=\frac{1}{120}\left[36 \cdot 2^{k / 3}\left(1+2 \cos \frac{2 k \pi}{3}\right)+2 \cdot 2^{(k+1) / 3}\left(-1+2 \sin \frac{(4 k+1) \pi}{6}\right)\right. \\
\left.+(-2)^{k}\left(5+8 \cos \frac{2 k \pi}{3}-2 \sin \frac{(4 k+1) \pi}{6}\right)\right], \quad k \in \mathbb{N}_{0} \tag{27}
\end{gather*}
$$

In Mathematica ${ }^{\circledR}$, we can easily verify that the formulas (22) and (27) present the same solution to the problem (20),(21). Namely, after running the code
$\mathrm{x} 1=\ldots$;
x2 $=\ldots$;
FullSimplify $[\mathrm{x} 1==\mathrm{x} 2$, Assumptions->Element[k,Integers] \& \& $\mathrm{k}>=0$]
where '...' mean the right sides of (22) and (27), respectively, we obtain the logical value True.

REFERENCES

[1] Bittner R., On certain axiomatics for the operational calculus, 'Bull. Acad. Polon. Sci.', Cl. III, 1959, 7(1), pp. 1-9.
[2] Bittner R., Operational calculus in linear spaces, 'Studia Math.', 1961, 20, pp. 1-18.
[3] Bittner R., Algebraic and analytic properties of solutions of abstract differential equations, 'Rozprawy Matematyczne' ['Dissertationes Math.'], 42, PWN, Warszawa 1964.
[4] Bittner R., Rachunek operatorów w przestrzeniach liniowych, PWN, Warszawa 1974 [Operational Calculus in Linear Spaces — available in Polish].
[5] Bittner R., Mieloszyk E., About eigenvalues of differential equations in the operational calculus, 'Zeszyty Naukowe Politechniki Gdańskiej. Matematyka XI', 1978, 285, pp. 87-99.
[6] Mieloszyk E., Example of operational calculus, 'Zeszyty Naukowe Politechniki Gdańskiej. Matematyka XIII', 1985, 383, pp. 151-157.
[7] Mikusiński J., Operational Calculus, Pergamon Press, London 1959.
[8] Wysocki H., The result derivative, distributive results, 'Acta Math. Hungarica', 1989, 53(3-4), pp. 289-307.
[9] Wysocki H., An operational calculus model for the $n^{\text {th-order forward difference, 'Zeszyty Nau- }}$ kowe Akademii Marynarki Wojennej — Scientific Journal of PNA', 2017, 3(210), pp. 107-117.

CIAG WYKŁADNICZY W MODELU RACHUNKU OPERATORÓW DLA RÓŻNICY PROGRESYWNEJ RZĘDU n

STRESZCZENIE

W artykule wyznaczono element wykładniczy w dyskretnym modelu nieklasycznego rachunku operatorów Bittnera dla różnicy progresywnej rzędu n.

Słowa kluczowe:
rachunek operatorów, pochodna, pierwotne warunki graniczne, różnica progresywna, ciąg wykładniczy.

Article history

Received: 14.03.2019
Reviewed: 03.06.2019
Revised: 17.06.2019
Accepted: 19.06.2019

[^0]: ${ }^{1} \mathbb{N}$ denotes a set of natural numbers.

[^1]: ${ }^{2}$ In the operational calculus, we differentiate between a symbol of a function and a symbol of a function value at a point. In particular, $\{x(k)\}$ means a sequence, while $x(k)$ - its value for a given $k \in \mathbb{N}_{0}$. This denotation is derived from J. Mikusiński [7]. In what follows, provided it does not cause ambiguity, we will skip the $\}$ brackets.

[^2]: ${ }^{3}\{b(k)\}$ is a sequence such that $b(k) \neq 0$ for each $k \in \mathbb{N}_{0}$, while $\{b(k) x(k)\}$ means a termwise (Hadamard) multiplication of b, x sequences.

