Hubert Wysocki*

JACKSON AND HAHN DIFFERENCE MODELS AS DISCRETE BITTNER OPERATIONAL CALCULUS REPRESENTATIONS

Abstract

In the paper, there have been constructed discrete models of the non-classical Bittner operational calculus that are related to the notions of Jackson and Hahn derivatives, both known from the quantum calculus. To achieve it, we have used the Bittner operational calculus representation for the forward difference.

Key words:
operational calculus, derivative, integrals, limit conditions, Jackson difference, Hahn difference.

INTRODUCTION

Let $f(t)$ be a real function determined on the interval $(0,+\infty)$. Moreover, let

$$
\begin{gathered}
d_{h} f(t):=f(t+h)-f(t), \quad h \in \mathbb{R}_{>0} \\
\delta_{q} f(t):=f(q t)-f(t), \quad q \in \mathbb{R}_{>0} \backslash\{1\} .
\end{gathered}
$$

The essence of the q-calculus (quantum calculus) $[2,3,8,11]$ is to substitute the shift $t+h$ with a dilatation $q t$ in the difference quotient

$$
\frac{f(t+h)-f(t)}{h}=\frac{d_{h} f(t)}{d_{h} t}=: D_{h} f(t) .
$$

Then, we have

$$
D_{q} f(t):=\frac{\delta_{q} f(t)}{\delta_{q} t}=\frac{f(q t)-f(t)}{(q-1) t} .
$$

[^0]The operations D_{h} and D_{q} are called an h-derivative and a q-derivative (or Jackson derivative) $[10,11]$, respectively.

Using an increment

$$
\delta_{h, q} f(t):=f(q t+h)-f(t),
$$

we determine the operation

$$
D_{h, q} f(t):=\frac{\delta_{h, q} f(t)}{\delta_{h, q} t}=\frac{f(q t+h)-f(t)}{(q-1) t+h}
$$

called an h, q-derivative (or Hahn derivative) [7, 9].
It is a generalization of D_{h} and D_{q} (which are obtained with $q \rightarrow 1$ and $h \rightarrow 0$, respectively).

In the finite difference calculus, a forward difference

$$
\begin{equation*}
\Delta f(k):=f(k+1)-f(k) \tag{1}
\end{equation*}
$$

corresponds to the increment

$$
d_{h} f\left(t_{k}\right)=f\left(t_{k}+h\right)-f\left(t_{k}\right),
$$

where $f(k) \equiv f\left(t_{k}\right):=f\left(t_{0}+k h\right), k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ and \mathbb{N} is the set of naturals.
The $n^{\text {th }}$-order forward difference

$$
\Delta_{n} f(k):=f(k+n)-f(k),
$$

where n is a given natural number, is a generalization of the operation (1).

A MODEL OF THE OPERATIONAL CALCULUS WITH THE $n^{\text {TH-ORDER FORWARD DIFFERENCE }}$

Let \mathbb{C} be a set of complex numbers, while $C\left(\mathbb{N}_{0}, \mathbb{C}\right)$ - a linear space of complex sequences $x=\{x(k)\}_{k \in \mathbb{N}_{0}}{ }^{1}$ with a usual sequences addition and multiplication of sequences by complexes.

[^1]Moreover, let

$$
\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n-1}
$$

be $n^{\text {th }}$ roots of unity, i.e.

$$
\varepsilon_{j}=\cos \frac{2 j \pi}{n}+\mathrm{i} \sin \frac{2 j \pi}{n}, \quad j \in \overline{0, n-1},
$$

where $\overline{0, n-1}:=\{0,1, \ldots, n-1\}$ and ' i ' is the imaginary unit.
In [13] it has been shown that the operations $S \equiv \Delta_{n}, T_{k_{0}}, s_{k_{0}}$, where $k_{0} \in \mathbb{N}_{0}$, determined on $C\left(\mathbb{N}_{0}, \mathbb{C}\right)$ as follows

$$
\begin{gather*}
S x:=\{x(k+n)-x(k)\}, \tag{2}\\
T_{k_{0}} x:=\left\{\frac{1}{n} \sum_{j=0}^{n-1}\left[\sum_{i=0}^{k-1} \varepsilon_{j}^{k-i} x(i)-\sum_{i=0}^{k_{0}-1} \varepsilon_{j}^{k-i} x(i)\right]\right\}, \tag{3}\\
s_{k_{0}} x:=\left\{\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=k_{0}}^{k_{0}+n-1} \varepsilon_{j}^{k-i} x(i)\right\}, \tag{4}
\end{gather*}
$$

form a discrete model (representation) of the so-called Bittner operational calculus and satisfy two basic formulas of this calculus, i.e.

$$
\begin{equation*}
S T_{k_{0}} x=x, \quad T_{k_{0}} S x=x-s_{k_{0}} x . \tag{5}
\end{equation*}
$$

FUNDAMENTALS OF THE BITTNER OPERATIONAL CALCULUS

The Bittner operational calculus [4-6] is a system

$$
\begin{equation*}
C O\left(L^{0}, L^{1}, S, T_{\gamma}, s_{\gamma}, \Gamma\right) \tag{6}
\end{equation*}
$$

in which L^{0} and L^{1} are linear spaces (over the same scalar field \mathscr{F}) such that $L^{1} \subset L^{0}$. The linear operation $S: L^{1} \longrightarrow L^{0}$ (denoted as $S \in \mathscr{L}\left(L^{1}, L^{0}\right)$), called the (abstract) derivative, is a surjection. Moreover, Γ is a set of indexes γ for the operations $T_{\gamma} \in \mathscr{L}\left(L^{0}, L^{1}\right)$ and $s_{\gamma} \in \mathscr{L}\left(L^{1}, L^{1}\right)$ such that $S T_{\gamma} f=f, f \in L^{0}$ and $s_{\gamma} x=x-T_{\gamma} S x, x \in L^{1}$. T_{γ} and s_{γ} are called integrals and limit conditions, respectively. The kernel of S, i.e. Ker S is a set of constants for the derivative S. The limit conditions s_{γ} are projections of L^{1} on the subspace $\operatorname{Ker} S$.

If we define the objects (6), then we speak of a representation or a model of the operational calculus.

A MODEL OF THE OPERATIONAL CALCULUS WITH THE $n^{\text {TH }}$-ORDER JACKSON DIFFERENCE

A set

$$
\mathbb{T}_{J} \equiv q^{\mathbb{N}_{0}}:=\left\{k_{q}: \quad k_{q}:=q^{k}, k \in \mathbb{N}_{0}\right\}=\left\{1, q, q^{2}, q^{3}, \ldots\right\}
$$

will be called the Jackson time scale (cf. [1]).
As previously, let $C\left(\mathbb{T}_{J}, \mathbb{C}\right)$ be a linear space of complex sequences $x=\left\{x\left(k_{q}\right)\right\}_{k_{q} \in \mathbb{T}_{J}}$ with a usual sequences addition and sequences multiplication by complexes. Then $C\left(\mathbb{T}_{J}, \mathbb{C}\right)=C\left(\mathbb{N}_{0}, \mathbb{C}\right)$. Indeed, each term of a sequence $\left\{x\left(k_{q}\right)\right\} \in C\left(\mathbb{T}_{J}, \mathbb{C}\right)$ can be presented in the form of

$$
x\left(k_{q}\right) \equiv x\left(q^{k}\right)=: \tilde{x}(k)
$$

where $\{\tilde{x}(k)\} \in C\left(\mathbb{N}_{0}, \mathbb{C}\right)$. For $\{x(k)\} \in C\left(\mathbb{N}_{0}, \mathbb{C}\right)$, in turn, we have

$$
x(k)=x\left(\operatorname{lq}\left(q^{k}\right)\right)=: \hat{x}\left(k_{q}\right),
$$

where $\left\{\hat{x}\left(k_{q}\right)\right\} \in C\left(\mathbb{T}_{J}, \mathbb{C}\right)$ and $\operatorname{lq}(t):=\log _{q}(t)$.
On the space $C\left(\mathbb{T}_{J}, \mathbb{C}\right)$ we define a forward q-difference

$$
\begin{equation*}
\Delta_{J, q}\left\{x\left(k_{q}\right)\right\}:=\left\{x\left(q k_{q}\right)-x\left(k_{q}\right)\right\} . \tag{7}
\end{equation*}
$$

It corresponds to an increment

$$
\delta_{q} x(t)=x(q t)-x(t)
$$

which determines the Jackson q-derivative D_{q}.
The below $n^{\text {th }}$-order Jackson difference

$$
\begin{equation*}
\Delta_{J, q, n}\left\{x\left(k_{q}\right)\right\}:=\left\{x\left(q^{n} k_{q}\right)-x\left(k_{q}\right)\right\}, \tag{8}
\end{equation*}
$$

where n is a given natural number, is a generalization of the operation (7).
Hence, we have

$$
\Delta_{J, q, n}\left\{x\left(k_{q}\right)\right\}=\left\{x\left((k+n)_{q}\right)-x\left(k_{q}\right)\right\}=\{\tilde{x}(k+n)-\tilde{x}(k)\}=\Delta_{n}\{\tilde{x}(k)\} .
$$

Thus, to the operation $\Delta_{J, q, n}$, determined on the Jackson time scale $q^{\mathbb{N}_{0}}$, there corresponds the difference Δ_{n} defined on the scale \mathbb{N}_{0}.

Therefore, on the basis of (2)-(4), to the derivative S_{J} understood as the forward q-difference (8), there correspond integrals

$$
\begin{equation*}
T_{J, k_{0 q}}\left\{x\left(k_{q}\right)\right\}:=\left\{\frac{1}{n} \sum_{j=0}^{n-1}\left[\sum_{i=0}^{\operatorname{lq}\left(k_{q}\right)-1} \varepsilon_{j}^{\operatorname{lq}\left(k_{q}\right)-i} x\left(i_{q}\right)-\sum_{i=0}^{\operatorname{lq}\left(k_{0 q}\right)-1} \varepsilon_{j}^{\operatorname{lq}\left(k_{q}\right)-i} x\left(i_{q}\right)\right]\right\} \tag{9}
\end{equation*}
$$

and limit conditions

$$
\begin{equation*}
S_{J, k_{0 q}}\left\{x\left(k_{q}\right)\right\}:=\left\{\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=\operatorname{lq}\left(k_{0 q}\right)}^{\operatorname{lq}\left(k_{0 q}\right)+n-1} \varepsilon_{j}^{\operatorname{lq}\left(k_{q}\right)-i} x\left(i_{q}\right)\right\}, \tag{10}
\end{equation*}
$$

where $k_{0 q}=q^{k_{0}} \equiv \gamma \in \Gamma:=\mathbb{T}_{J}, \operatorname{lq}\left(k_{q}\right)=k$ and $\left\{x\left(k_{q}\right)\right\} \in L^{0}=L^{1}:=C\left(\mathbb{T}_{J}, \mathbb{C}\right)$.
For the above operations (9) and (10) the formulas (5) are satisfied.
So, we get the
Corollary 1. The operations (8)-(10) form a discrete Jackson model of the Bittner operational calculus

$$
C O\left(C\left(\mathbb{T}_{J}, \mathbb{C}\right), C\left(\mathbb{T}_{J}, \mathbb{C}\right), S_{J}, T_{J, k_{0 q}}, s_{J, k_{0 q}}, \mathbb{T}_{J}\right)
$$

Using Mathematica, we can easily determine the consecutive terms of the sequences (8)-(10). For example, for $n=3$ and $k_{0}=0$ we obtain

$$
\begin{gathered}
S_{J}\left\{x\left(k_{q}\right)\right\} \equiv \Delta_{J, q, 3}\left\{x\left(q^{k}\right)\right\}=\left\{x\left(q^{k+3}\right)-x\left(q^{k}\right)\right\}, \\
T_{J, 0 q}\left\{x\left(k_{q}\right)\right\} \equiv T_{J, 0 q}\left\{x\left(q^{k}\right)\right\}=\left\{0,0,0, x\left(q^{0}\right), x(q), x\left(q^{2}\right), x\left(q^{0}\right)+x\left(q^{3}\right), x(q)+x\left(q^{4}\right),\right. \\
x\left(q^{2}\right)+x\left(q^{5}\right), x\left(q^{0}\right)+x\left(q^{3}\right)+x\left(q^{6}\right), x(q)+x\left(q^{4}\right)+x\left(q^{7}\right), x\left(q^{2}\right)+x\left(q^{5}\right)+x\left(q^{8}\right), \\
\left.x\left(q^{0}\right)+x\left(q^{3}\right)+x\left(q^{6}\right)+x\left(q^{9}\right), x(q)+x\left(q^{4}\right)+x\left(q^{7}\right)+x\left(q^{10}\right), \ldots\right\}, \\
S_{J, 0 q}\left\{x\left(k_{q}\right)\right\} \equiv s_{J, 0 q}\left\{x\left(q^{k}\right)\right\}=\left\{x\left(q^{0}\right), x(q), x\left(q^{2}\right), x\left(q^{0}\right), x(q), x\left(q^{2}\right), x\left(q^{0}\right), x(q), x\left(q^{2}\right), \ldots\right\} .
\end{gathered}
$$

Example 1. Using the described model, we will solve the q-difference equation

$$
\begin{equation*}
x\left(4^{3} k_{4}\right)-x\left(k_{4}\right)=4 \mathrm{lq}\left(k_{4}\right), \quad k_{4} \in 4^{\mathbb{N}_{0}} \tag{11}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
x\left(2_{4}\right) \equiv x(16)=2, x\left(3_{4}\right) \equiv x(64)=1, x\left(4_{4}\right) \equiv x(256)=1 . \tag{12}
\end{equation*}
$$

Hence we have $q=4, n=3, k_{0}=2$.

The equation (11) can be shown in the form of

$$
\begin{equation*}
S_{J} x=f, \tag{13}
\end{equation*}
$$

where $S_{J} \equiv \Delta_{J, 4,3}, x=\left\{x\left(k_{4}\right)\right\}, f=\left\{4 \operatorname{lq}\left(k_{4}\right)\right\}=\{4 k\}$.
Using Mathematica, on the basis of the formula (10), we determine the limit condition corresponding to the initial conditions (12). Finally, we get

$$
\begin{equation*}
s_{J, 2_{4}}\left\{x\left(k_{4}\right)\right\}=\left\{\frac{1}{3}\left(4-\sqrt{3} \sin \frac{2 \pi \operatorname{lq}\left(k_{4}\right)}{3}-\cos \frac{2 \pi \operatorname{lq}\left(k_{4}\right)}{3}\right)\right\}=: c . \tag{14}
\end{equation*}
$$

The problem (13), (14) has exactly one solution (Th. 3 [6])

$$
x=c+T_{J, 2_{4}} f .
$$

Hence, using Mathematica and basing on (9), we obtain a solution to the Cauchy problem (11), (12):

$$
x\left(k_{4}\right)=\frac{1}{9}\left(8+6\left(\operatorname{lq}\left(k_{4}\right)-3\right) \operatorname{lq}\left(k_{4}\right)-15 \sqrt{3} \sin \frac{2 \pi \operatorname{lq}\left(k_{4}\right)}{3}+\cos \frac{2 \pi \operatorname{lq}\left(k_{4}\right)}{3}\right), \quad k_{4} \in 4^{\mathbb{N}_{0}} .
$$

A MODEL OF THE OPERATIONAL CALCULUS WITH THE $n^{\text {TH}}$-ORDER HAHN DIFFERENCE

In the quantum calculus, there are determined the so-called q-numbers (q-analogs of non-negative integers)

$$
[k]_{q}:=\frac{1-q^{k}}{1-q}, \quad k \in \mathbb{N}_{0} .
$$

The set

$$
\mathbb{T}_{H} \equiv \mathbb{G}_{q}:=\left\{0,1,1+q, 1+q+q^{2}, \ldots, 1+q+q^{2}+\ldots+q^{k-1}, \ldots\right\},
$$

i.e. $\mathbb{T}_{H}=\left\{[k]_{q}: k \in \mathbb{N}_{0}\right\}$, will be called the Hahn time scale (cf. [1]).

The below operation

$$
\begin{equation*}
\Delta_{H, q, n}\left\{x\left([k]_{q}\right)\right\}:=\left\{x\left(q^{n}[k]_{q}+[n]_{q}\right)-x\left([k]_{q}\right)\right\}, \tag{15}
\end{equation*}
$$

which is determined on the space $C\left(\mathbb{T}_{H}, \mathbb{C}\right)$ and where $q \in \mathbb{R}_{>0} \backslash\{1\}$ and $n \in \mathbb{N}$ are given, will be called the $n^{\text {th }}$-order Hahn difference.

Notice that

$$
q^{n}[k]_{q}+[n]_{q}=\frac{q^{n}\left(1-q^{k}\right)+\left(1-q^{n}\right)}{1-q}=\frac{1-q^{k+n}}{1-q}=[k+n]_{q} .
$$

Thus

$$
\Delta_{H, q, n}\left\{x\left([k]_{q}\right)\right\}=\left\{x\left([k+n]_{q}\right)-x\left([k]_{q}\right)\right\}=\{\breve{x}(k+n)-\breve{x}(k)\}=\Delta_{n}\{\breve{x}(k)\},
$$

which means that to the operation $\Delta_{H, q, n}$ determined on the Hahn time scale \mathbb{T}_{H}, there corresponds the difference Δ_{n} defined on the scale \mathbb{N}_{0}.

Hence, on the basis of (2)-(4), we infer that to the derivative S_{H} understood as the Hahn difference (15), there correspond the below integrals

$$
\begin{align*}
T_{H,\left[k_{0}\right]_{q}}\left\{x\left([k]_{q}\right)\right\} & :=\left\{\frac { 1 } { n } \sum _ { j = 0 } ^ { n - 1 } \left[\sum_{i=0}^{\operatorname{lq}\left(1-(1-q)[k]_{q}\right)-1} \varepsilon_{j}^{\operatorname{lq}\left(1-(1-q)[k]_{q}\right)-i} x\left([i]_{q}\right)\right.\right. \\
& \left.\left.-\sum_{i=0}^{\operatorname{lq}\left(1-(1-q)\left[k_{0}\right]_{q}\right)-1} \varepsilon_{j}^{\operatorname{lq}\left(1-(1-q)[k]_{q}\right)-i} x\left([i]_{q}\right)\right]\right\} \tag{16}
\end{align*}
$$

and limit conditions

$$
\begin{equation*}
s_{H,\left[k_{0}\right]_{q}}\left\{x\left([k]_{q}\right)\right\}:=\left\{\frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=\operatorname{lq}\left(1-(1-q)\left[k_{0}\right]_{q}\right)}^{\operatorname{lq}\left(1-(1-q)\left[k_{0}\right]_{q}\right)+n-1} \varepsilon_{j}^{\operatorname{lq}\left(1-(1-q)[k]_{q}\right)-i} x\left([i]_{q}\right)\right\}, \tag{17}
\end{equation*}
$$

where $\left[k_{0}\right]_{q}=\left(1-q^{k_{0}}\right) /(1-q) \equiv \gamma \in \Gamma:=\mathbb{T}_{H}, \operatorname{lq}\left(1-(1-q)[k]_{q}\right)=k$ and $\left\{x\left([k]_{q}\right)\right\} \in$ $L^{0}=L^{1}:=C\left(\mathbb{T}_{H}, \mathbb{C}\right)$

Thus, we come to the
Corollary 2. The operations (15)-(17) form a discrete Hahn model of the Bittner operational calculus

$$
C O\left(C\left(\mathbb{T}_{H}, \mathbb{C}\right), C\left(\mathbb{T}_{H}, \mathbb{C}\right), S_{H}, T_{H,\left[k_{0}\right]_{q}}, s_{H,\left[k_{0}\right]_{q}}, \mathbb{T}_{H}\right)
$$

Example 2. In the considered model, using Mathematica, we will determine such a solution to the equation

$$
\begin{equation*}
x\left(0.5^{4}[k]_{0.5}+[4]_{0.5}\right)-x\left([k]_{0.5}\right)=[k]_{0.5}, \quad[k]_{0.5} \in \mathbb{G}_{0.5} \tag{18}
\end{equation*}
$$

that satisfies the initial conditions

$$
x\left([0]_{0.5}\right) \equiv x(0)=0, x\left([1]_{0.5}\right) \equiv x(1)=1, x\left([2]_{0.5}\right) \equiv x(1.5)=0, x\left([3]_{0.5}\right) \equiv x(1.75)=2 .
$$

We have here $q=0.5, n=4, k_{0}=0$ as well as the equation (18) in the form of $S_{H} x=f$, where $S_{H} \equiv \Delta_{H, 0.5,4}, x=\left\{x\left([k]_{0.5}\right)\right\}, f=\left\{[k]_{0.5}\right\}=\left\{2\left(1-0.5^{k}\right)\right\}$.

Similarly as before, from the formula

$$
x=s_{H,[0]_{0.5}} x+T_{H,[0]_{0.5}} f,
$$

we eventually get

$$
\begin{gathered}
x\left([k]_{0.5}\right)=\frac{5}{6} \cos \left(\pi \mathrm{lb}\left(2-[k]_{0.5}\right)\right)-\frac{1}{10}\left(3 \sin \frac{\pi \mathrm{lb}\left(2-[k]_{0.5}\right)}{2}+4 \cos \frac{\pi \mathrm{lb}\left(2-[k]_{0.5}\right)}{2}\right) \\
+\frac{1}{30}\left(49-32[k]_{0.5}\right)-\frac{1}{2} \mathrm{lb}\left(2-[k]_{0.5}\right), \quad[k]_{0.5} \in \mathbb{G}_{0.5},
\end{gathered}
$$

where $\mathrm{lb}(t)$ denotes the binary logarithm $\log _{2}(t)$.

SOME GENERALIZATIONS

In [13], there was also considered a forward difference S_{b} with the basis $b \in \mathbb{C} \backslash\{0\}$

$$
S_{b}\{x(k)\}:=\{x(k+n)-b x(k)\},
$$

which is a generalization of the operation (2). It was shown that to the derivative S_{b} there correspond the integrals

$$
T_{b, k_{0}}\{x(k)\}:=\{e(k)\} T_{k_{0}}\left\{\frac{x(k)}{e(k+n)}\right\}
$$

and the limit conditions

$$
s_{b, k_{0}}\{x(k)\}:=\{e(k)\} s_{k_{0}}\left\{\frac{x(k)}{e(k)}\right\},
$$

where $\{e(k)\}:=\left\{b^{k / n}\right\} \in \operatorname{Ker} S_{b}$, while $T_{k_{0}}$ and $s_{k_{0}}$ are the operations (3) and (4), respectively.

Therefore, on the basis of the foregoing considerations we obtain the two following corollaries:

Corollary 3. The operations

$$
\begin{gathered}
S_{J, b}\left\{x\left(k_{q}\right)\right\}:=\left\{x\left(q^{n} k_{q}\right)-b x\left(k_{q}\right)\right\}, \\
T_{J, b, k_{0 q}}\left\{x\left(k_{q}\right)\right\}:=\left\{\hat{e}\left(k_{q}\right)\right\} T_{J, k_{0 q} q}\left\{\frac{x\left(k_{q}\right)}{\hat{e}\left((k+n)_{q}\right)}\right\}, \\
S_{J, b, k_{0 q}}\left\{x\left(k_{q}\right)\right\}:=\left\{\hat{e}\left(k_{q}\right)\right\} S_{J, k_{0 q}}\left\{\frac{x\left(k_{q}\right)}{\hat{e}\left(k_{q}\right)}\right\},
\end{gathered}
$$

where $\hat{e}\left(k_{q}\right):=b^{\frac{1}{n} \operatorname{lq}\left(k_{q}\right)}=e(k)$, form a discrete Jackson model of the Bittner operational calculus

$$
C O\left(C\left(\mathbb{T}_{J}, \mathbb{C}\right), C\left(\mathbb{T}_{J}, \mathbb{C}\right), S_{J, b}, T_{J, b, k_{0 q}}, s_{J, b, k_{0 q}}, \mathbb{T}_{J}\right)
$$

Corollary 4. The operations

$$
\begin{gathered}
S_{H, b}\left\{x\left([k]_{q}\right)\right\}:=\left\{x\left(q^{n}[k]_{q}+[n]_{q}\right)-b x\left([k]_{q}\right)\right\}, \\
T_{H, b,\left[k_{0}\right]_{q}}\left\{x\left([k]_{q}\right)\right\}:=\left\{\check{e}\left([k]_{q}\right)\right\} T_{H,\left[k_{0}\right]_{q}}\left\{\frac{x\left([k]_{q}\right)}{\check{e}\left([k+n]_{q}\right)}\right\}, \\
s_{H, b,\left[k_{0}\right]_{q}}\left\{x\left([k]_{q}\right)\right\}:=\left\{\check{e}\left([k]_{q}\right)\right\} s_{H,\left[k_{0}\right]_{q}}\left\{\frac{x\left([k]_{q}\right)}{\check{e}\left([k]_{q}\right)}\right\},
\end{gathered}
$$

where $\check{e}\left([k]_{q}\right):=b^{\frac{1}{n} \operatorname{lq}\left(1-(1-q)[k]_{q}\right)}=e(k)$, form a discrete Hahn model of the Bittner operational calculus

$$
\operatorname{CO}\left(C\left(\mathbb{T}_{H}, \mathbb{C}\right), C\left(\mathbb{T}_{H}, \mathbb{C}\right), S_{H, b}, T_{H, b,\left[k_{0}\right]_{q}}, s_{\left.H, b,\left[k_{0}\right]_{q}, \mathbb{T}_{H}\right) .}\right.
$$

REFERENCES

[1] Aldwoah K. A., Hamza A. E., Generalized time scales, 'Advances in Dynamical Systems and Applications', 2011, 6 (2), pp. 129-158.
[2] Annaby M. H., Mansour Z. S., q-Fractional Calculus and Equations, Springer, Heilderberg 2012.
[3] Aral A., Gupta V., Agarwal R. P., Applications of q-Calculus in Operator Theory, Springer, New York 2013.
[4] Bittner R., Operational calculus in linear spaces, 'Studia Math.', 1961, 20, pp. 1-18.
[5] Bittner R., Algebraic and analytic properties of solutions of abstract differential equations, 'Rozprawy Matematyczne' ['Dissertationes Math.'], 41, PWN, Warszawa 1964.
[6] Bittner R., Rachunek operatorów w przestrzeniach liniowych, PWN, Warszawa 1974 [Operational Calculus in Linear Spaces - available in Polish].
[7] Brito da Cruz A. M. C., Martins N., Torres D. F. M., Higher-order Hahn's quantum variational calculus, 'Nonlinear Anal.' 2012, 75 (3), pp. 1147-1157.
[8] Ernst T., A Comprehensive Treatment of q-Calculus, Birkhäuser/Springer, Basel 2012.
[9] Hahn W., Über Orthogonalpolynome, die q-Differenzengleichungen genügen, 'Mathematische Nachr.', 1949, 2 (1-2), pp. 4-34.
[10] Jackson F. H., On q-functions and a certain difference operator, 'Transactions of the Royal Society of Edinburgh', 1909, 46 (2), pp. 253-281.
[11] Kac V., Cheung P., Quantum Calculus, Springer, New York 2002.
[12] Mikusiński J., Operational Calculus, Pergamon Press, New York 1959.
[13] Wysocki H., An operational calculus model for the nth-order forward difference, 'Zeszyty Naukowe Akademii Marynarki Wojennej’ ['Scientific Journal of Polish Naval Academy'], 2017, No. 3, pp. 107-117.

RÓŻNICOWE MODELE JACKSONA I HAHNA JAKO DYSKRETNE REPREZENTACJE RACHUNKU OPERATORÓW BITTNERA

STRESZCZENIE

W artykule skonstruowano dyskretne modele nieklasycznego rachunku operatorów Bittnera związane z pojęciami pochodnej Jacksona i pochodnej Hahna znanymi z rachunku kwantowego. Do tego celu wykorzystano reprezentację rachunku operatorów Bittnera dla różnicy progresywnej.

Słowa kluczowe:
rachunek operatorów, pochodna, pierwotne, warunki graniczne, różnica Jacksona, różnica Hahna.

[^0]: * Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69 Str., 81-127 Gdynia, Poland; e-mail: h.wysocki@amw.gdynia.pl

[^1]: ${ }^{1}$ Formally, in the operational calculus we differentiate a function symbol from a symbol of a function value at a point. In particular, $\{x(k)\}$ signifies a sequence, whereas $x(k)$ - its value for a given $k \in \mathbb{N}_{0}$. This notation is derived from J. Mikusiński [12]. In what follows, we shall skip the brackets \{\} whenever it does not cause ambiguity.

