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ABSTRACT 

This paper provides the definitions and basic properties related to a discrete state space semi- 

-Markov process. The semi-Markov process is constructed by the so called Markov renewal 

process that is a special case the two-dimensional Markov sequence. The Markov renewal process is 

defined by the transition probabilities matrix, called the renewal kernel and an initial distribution 

or by another characteristics which are equivalent to the renewal kernel. The counting process 

corresponding to the semi-Markov process allows to determine concept of the process regularity. 

In the paper are also shown the other methods of determining the semi-Markov process. The 

presented concepts are illustrated a simple example. 
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INTRODUCTION 

The semi-Markov processes were introduced independently and almost 

simultaneously by P. Levy [9], W. L. Smith [12] and L. Takacs [13] in 1954–1955. 

The essential developments of semi-Markov processes theory were proposed by  

R. Pyke [11–13], E. Cinlar [2], Koroluk, Turbin [8, 9], N. Limnios and G. Oprisan [10], 

D. C. Silvestrov [14]. We present only semi-Markov processes with a discrete state 

space. A semi-Markov process is constructed by the Markov renewal process which 

is defined by the renewal kernel and the initial distribution or by another charac-

teristics which are equivalent to the renewal kernel. 
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MARKOV RENEWAL PROCESSES 

Suppose that  ℕ = {1, 2, … },   ℕ0 = {0, 1, 2, … },    ℝ+ = [0, ∞)  and   𝑆   is  

a discrete (finite or countable) state space. Let  𝜉𝑛  be a discrete random variable 

taking values on  𝑆  and let  𝜗𝑛  be a continuous random variable with values in the 

set    ℝ+.  

Definition 1. A two-dimensional sequence of random variables {(𝜉𝑛, 𝜗𝑛):  𝑛 ∈ ℕ0} is 

said to be a Markov Renewal Process (MRP) if:  

1) for all 𝑛 ∈ ℕ0,    𝑗 ∈ 𝑆,    𝑡 ∈ ℝ +  

 𝑃(𝜉𝑛+1 = 𝑗, 𝜗𝑛+1 ≤ 𝑡 | 𝜉𝑛 = 𝑖, 𝜗𝑛, … 𝜉0, 𝜗0) = 𝑃(𝜉𝑛+1 = 𝑗, 𝜗𝑛+1 ≤ 𝑡 | 𝜉𝑛 = 𝑖) (1) 

with probability 1; 

2) for all   𝑖, 𝑗 ∈ 𝑆,   𝑃(𝜉0 = 𝑖, 𝜗0 = 0) = 𝑃(𝜉0 = 𝑖). (2) 

From the definition 1 it follows, that MRP is a homogeneous two-dimen-

sional Markov chain such that its transition probabilities depend only on the discrete 

component (they do not depend on the second component). A matrix  

 𝑄(𝑡) = [ 𝑄𝑖𝑗(𝑡):  𝑖, 𝑗 ∈ 𝑆 ];  (3) 

 𝑄𝑖𝑗(𝑡) = 𝑃(𝜉𝑛+1 = 𝑗, 𝜗𝑛+1 ≤ 𝑡 | 𝜉𝑛 = 𝑖)   is called a renewal matrix. 

A vector   𝑝 = [𝑝𝑖:  𝑖 ∈ 𝑆],  where   𝑝𝑖 = 𝑃{𝜉0 = 𝑖}   defines an initial distri-

bution of the Markov renewal process. It follows from the definition 1 that the 

Markov renewal matrix satisfies the following conditions:  

1. The functions 𝑄𝑖𝑗(𝑡),    𝑡 ≥ 0,    (𝑖, 𝑗) ∈ 𝑆 × 𝑆 are not decreasing and right-hand 

continuous. 

2. For each pair  (𝑖, 𝑗) ∈ 𝑆 × 𝑆,    𝑄𝑖𝑗(0) = 0  and  𝑄𝑖𝑗(𝑡) ≤ 1  for   𝑡 ∈ ℝ+. 

3. For each   𝑖 ∈ 𝑆,    lim
𝑡→∞

∑𝑗∈𝑆 𝑄𝑖𝑗(𝑡) = 1.  

One can prove that a function matrix   𝑄(𝑡) = [ 𝑄𝑖𝑗(𝑡):  𝑖, 𝑗 ∈ 𝑆 ]   satisfying the 

above mentioned conditions and a vector   𝑝0 = [ 𝑝𝑖
(0)

:  𝑖 ∈ 𝑆 ]   such that ∑𝑖∈𝑆 𝑝𝑖
(0)

= 1 

define some Markov renewal process. 

From definition of the renewal matrix it follows that 

 𝑃 = [ 𝑝𝑖𝑗:  𝑖, 𝑗 ∈ 𝑆 ],      𝑝𝑖𝑗 = lim
𝑡→∞

𝑄𝑖𝑗(𝑡)  (4) 

is a stochastic matrix. It means that for each pair   (𝑖, 𝑗) ∈ 𝑆 × 𝑆   𝑝𝑖𝑗  ≥ 0 and for 

each   𝑖 ∈ 𝑆,  ∑𝑗∈𝑆 𝑝𝑖𝑗 = 1.  
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It is easy to notice that for each   𝑖 ∈ 𝑆  

  𝐺𝑖(𝑡) = ∑𝑗∈𝑆 𝑄𝑖𝑗  (𝑡)  (5) 

is a probability cumulative distribution function (CDF) on ℝ+. The definition 1 

leads to the interesting and important conclusions 𝑃(𝜗0 = 0) = 1. 

For a Markov Renewal Process with an initial distribution   𝑝0   and a renewal 

kernel  𝑄(𝑡), 𝑡 ≥  0  a following equality is satisfied 

𝑃(𝜉0 = 𝑖0, 𝜉1 = 𝑖1, 𝜗1   ≤ 𝑡1, … , 𝜉𝑛 = 𝑖𝑛, 𝜗𝑛   ≤ 𝑡𝑛) =

𝑝𝑖0
𝑄𝑖0𝑖1

(𝑡1)𝑄𝑖1𝑖2
(𝑡2) … 𝑄𝑖𝑛−1𝑖𝑛

(𝑡𝑛).  (6) 

For   𝑡1 → ∞, … , 𝑡𝑛 → ∞, we obtain  

  𝑃(𝜉0 = 𝑖0, 𝜉1 = 𝑖1, … , 𝜉𝑛 = 𝑖𝑛) = 𝑝𝑖0
𝑝𝑖0𝑖1

𝑝𝑖1𝑖2
… 𝑝𝑖𝑛−1𝑖𝑛

. (7) 

It means that  a sequence   {𝜉𝑛:  𝑛 ∈  ℕ0}   is a homogeneous Markov chain 

with the discrete state space   𝑆,  defined by the initial distribution   𝑝 = [ 𝑝𝑖0
:  𝑖0 ∈ 𝑆 ] 

and the transition matrix   𝑃 = [ 𝑝𝑖𝑗:  𝑖, 𝑗 ∈ 𝑆 ], where  

 𝑝𝑖𝑗 = lim
𝑡→∞

𝑄𝑖𝑗(𝑡). (8) 

The random variables   𝜗1, … , 𝜗𝑛   are conditionally independent if a trajectory 

of the Markov chain   {𝜉𝑛:  𝑛 ∈ ℕ0}   is given. It means that 

 𝑃(𝜗1 ≤ 𝑡1, 𝜗2 ≤ 𝑡2 … , 𝜗𝑛 ≤  𝑡𝑛 | 𝜉0 = 𝑖0, 𝜉1 = 𝑖1, … , 𝜉𝑛 = 𝑖𝑛) = (9) 

= ∏

𝑛

𝑘=1

𝑃(𝜗𝑘 ≤ 𝑡𝑘  | 𝜉𝑘 = 𝑖𝑘 , 𝜉𝑘−1 = 𝑖𝑘−1). 

The Markov renewal matrix   𝑄(𝑡) = [ 𝑄𝑖𝑗(𝑡):  𝑖, 𝑗 ∈ 𝑆 ]   is called continuous 

if each row of the matrix contains at least one element having continuous com-

ponent in the Lebesgue decomposition of the probability distribution.  

The matrix   𝑄(𝑡) = [𝑄𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆]   with elements  

𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐺𝑖(𝑡),    𝑖 ∈ 𝑆, 

where 

𝐺𝑖(𝑡) = 𝑐 𝐼[1,∞)(𝑡) + (1 − 𝑐) ∫
𝑡

0
ℎ𝑖(𝑢)𝑑𝑢,  𝑐 ∈ (0, 1),       𝑝𝑖𝑗  ≥ 0, ∑𝑗∈𝑆 𝑝𝑖𝑗 = 1 

and  ℎ𝑖(⋅)   is a continuous probability density function, is an example of the continuous 

Markov renewal matrix.  
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The Markov renewal matrix  𝑄(𝑡) = [ 𝑄𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆 ]  with elements 

𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐼[1,∞)(𝑡),    𝑖 ∈ 𝑆, 

where  𝑝𝑖𝑗  ≥ 0,   ∑𝑗∈𝑆 𝑝𝑖𝑗 = 1  is not continuous Markov renewal matrix. Moreover, in 

the whole paper we will assume that the Markov renewal matrix  𝑄(𝑡) =

[ 𝑄𝑖𝑗(𝑡):  𝑖, 𝑗 ∈ 𝑆 ]   is continuous. 

Let 

 𝜏0 = 𝜗0,         𝜏𝑛 = 𝜗1 + 𝜗2 + ⋯ + 𝜗𝑛, 𝑛 ∈ ℕ0,  (10) 

𝜏∞ = lim
𝑛→∞

𝜏𝑛 = sup{𝜏𝑛:  𝑛 ∈ ℕ0}. 

The sequence  {(𝜉𝑛, 𝜏𝑛): 𝑛 ∈ ℕ0}  is two-dimensional Markov chain with 

transition probabilities  

 𝑃(𝜉𝑛+1 = 𝑗, 𝜏𝑛+1 ≤  𝑡   |   𝜉𝑛 = 𝑖, 𝜏𝑛 = ℎ) = 𝑄𝑖𝑗(𝑡 − ℎ),     𝑖, 𝑗 ∈ 𝑆  (11) 

and it is also called Markov Renewal Process (MRP) Koroluk [7]. 

DEFINITION OF DISCRETE STATE SPACE SEMI-MARKOV PROCESS 

We shall present a definition and basic properties of a homogeneous semi-

Markov process with a countable or finite state space   𝑆. The semi-Markov process 

(SMP) will be determined by the Markov Renewal Process (MRP).  

Definition 2. A stochastic process   {𝑁(𝑡):  𝑡 ≥ 0}   defined by the formula  

 𝑁(𝑡) = 𝑠𝑢𝑝{𝑛 ∈ ℕ0:  𝜏𝑛 ≤ 𝑡}  (12) 

is called a counting process corresponding to a random sequence  {𝜏𝑛: 𝑛 ∈ ℕ0}.  

Definition 3. A discrete state space  𝑆  stochastic process  {𝑋(𝑡):  𝑡 ≥ 0}  with the 

piecewise constant and the right continuous sample paths given by  

 𝑋(𝑡) = 𝜉𝑁(𝑡)  (13) 

is called a Semi-Markov Process associated with the Markov Renewal Process 

 {(𝜉𝑛, 𝜗𝑛): 𝑛 ∈ ℕ0}  with the initial distribution  𝑝 = [𝑝𝑖(0):  𝑖 ∈ 𝑆 ] and the kernel 

 𝑄(𝑡) = [𝑄𝑖𝑗(𝑡):  𝑖, 𝑗 ∈ 𝑆 ],   𝑡 ≥  0.  

From definition  it follows that  

 𝑋(𝑡) = 𝜉𝑛     for     𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1),    𝑛 ∈ ℕ0.  (14) 
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the kernel  𝑄(𝑡), 𝑡  ≥ 0  define completely the semi-Markov process. From the 

definition of SMP it follows that 

 𝑋(𝜏𝑛) = 𝜉𝑛     for     𝑛 ∈ ℕ0.  (15) 

It means that a random sequence {𝑋(𝜏𝑛):  𝑛 ∈ ℕ0}  is a homogeneous Markov 

chain with a state space   𝑆, defined by the initial distribution  𝑝0 = [ 𝑝𝑖
0:  𝑖 ∈ 𝑆 ]  and 

the stochastic matrix  𝑃 = [ 𝑝𝑖𝑗:  𝑖, 𝑗 ∈ 𝑆 ], where   𝑝𝑖𝑗 = lim
𝑡→∞

𝑄𝑖𝑗(𝑡). The sequence 

{𝑋(𝜏𝑛):  𝑛 ∈ ℕ0}   is called an embedded Markov chain of the semi-Markov process 

{𝑋(𝑡):  𝑡 ≥  0}.  

REGULARITY OF SMP 

A semi-Markov process   {𝑋(𝑡):  𝑡 ≥ 0}   is said to be regular if the corres-

ponding counting process  {𝑁(𝑡):  𝑡 ≥  0}  has a finite number of jumps on a finite 

period with probability 1: 

 ∀𝑡≥0𝑃(𝑁(𝑡) < ∞) = 1.  (16) 

The equality (16) is equivalent to a relation  

 ∀𝑡≥0𝑃(𝑁(𝑡) = ∞) = 0.  (17) 

A semi-Markov process  {𝑋(𝑡) ∶ 𝑡 ≥ 0}  is regular if and only if  

∀𝑡≥0 lim
𝑛→∞

𝑃(𝑁(𝑡) ≥  𝑛) = lim
𝑛→∞

𝑃(𝜏𝑛 ≤ 𝑡) = 0  [5]. 

If  

𝐸[𝑁(𝑡)] < ∞, then a semi-Markov process   {𝑋(𝑡):  𝑡 ≥  0}  is regular. 

Every semi-Markov process with a finite state space   𝑆   is regular [7]. 

OTHER METHODS OF DETERMINING SEMI-MARKOV PROCESS 

The semi-Markov process was defined by the initial distribution  𝑝  and 

renewal kernel  𝑄(𝑡)  which determine the Markov Renewal Process. There are 

other ways of determining semi-Markov process. They are presented, among others, 

by Koroluk and Turbin [7], Limnios and Oprisan [10], Grabski [5, 6]. Some definitions 
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of semi-Markov process enable its construction. First, we introduce the concepts 

and symbols that will be necessary for further considerations. For  𝑃(𝜉𝑛+1 = 𝑗, 𝜉𝑛 =

𝑖) > 0  we define a function  

 𝐹𝑖𝑗(𝑡) = 𝑃(𝜗𝑛+1 ≤  𝑡 | 𝜉𝑛 = 𝑖, 𝜉𝑛+1 = 𝑗),      𝑖, 𝑗 ∈ 𝑆, 𝑡 ≥  0.  (18) 

Notice that  

𝐹𝑖𝑗(𝑡) = 𝑃(𝜗𝑛+1 ≤  𝑡 | 𝜉𝑛+1 = 𝑗, 𝜉𝑛 = 𝑖) =
𝑃{𝜗𝑛+1 ≤ 𝑡,   𝜉𝑛+1 = 𝑗,   𝜉𝑛 = 𝑖}

𝑃(𝜉𝑛+1 = 𝑗,  𝜉𝑛 = 𝑖)
= 

=
𝑃(𝜗𝑛+1 ≤ 𝑡, 𝜉𝑛+1 = 𝑗 | 𝜉𝑛 = 𝑖)

𝑃(𝜉𝑛+1 = 𝑗 | 𝜉𝑛 = 𝑖)
=

𝑄𝑖𝑗(𝑡)

𝑝𝑖𝑗
     for     𝑖, 𝑗 ∈ 𝑆, 𝑡 ≥  0. 

The function  

 𝐹𝑖𝑗(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛 ≤   𝑡 | 𝑋(𝜏𝑛) = 𝑖, 𝑋(𝜏𝑛+1) = 𝑗) =
𝑄𝑖𝑗(𝑡)

𝑝𝑖𝑗
  (19) 

is a cumulative probability distribution (CDF) of some random variable which is 

denoted by  𝑇𝑖𝑗   and it is called a holding time in state  𝑖, if the next state will be  𝑗. 

From (19) we have  

 𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡).  (20) 

The function  

 𝐺𝑖(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛  ≤ 𝑡 | 𝑋(𝜏𝑛) = 𝑖) = ∑𝑗∈𝑆 𝑄𝑖𝑗(𝑡)  (21) 

is a cumulative probability distribution of a random variable  𝑇𝑖   that is called  

a waiting time in state  𝑖  when a successor state is unknown.  

It follows from (20) that a semi-Markov process with the discrete state 

space can be defined by the transition probabilities matrix of an embedded Markov 

chain: 𝑃 = [𝑝𝑖𝑗:  𝑖, 𝑗 ∈ 𝑆]  and the matrix of the holing times CDF  𝐹(𝑡) =

[𝐹𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆] . Therefore a triple  (𝑝, 𝑃, 𝐹(𝑡))  determines the homogenous SMP 

with the discrete space  𝑆. This method of determining SMP is convenient, for 

Monte-Carlo simulation of the SMP sample path. 

From the Radon-Nikodym theorem it follows that there exist the functions 

 𝑎𝑖𝑗(𝑥),    𝑥 ≥ 0, 𝑖, 𝑗 ∈ 𝑆  such that  

 𝑄𝑖𝑗(𝑡) = ∫
𝑡

0
𝑎𝑖𝑗(𝑡) 𝑑𝐺𝑖(𝑥).  (22)  
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Since  

𝑄𝑖𝑗(𝑡) = 𝑃(𝜗𝑛+1�≤ 𝑡, 𝜉𝑛+1 = 𝑗�|�𝜉𝑛 = 𝑖) = 

= ∫

𝑡

0

𝑃(𝜉𝑛+1 = 𝑗�|�𝜉𝑛 = 𝑖, 𝜗𝑛+1 = 𝑥)𝑑𝑃(𝜗𝑛+1�𝑥�|�𝜉𝑛 = 𝑖) = 

= ∫

𝑡

0

�𝑃(𝜉𝑛+1 = 𝑗�|�𝜉𝑛 = 𝑖, 𝜗𝑛+1 = 𝑥)�𝑑𝐺𝑖(𝑥) 

then  

 𝑎𝑖𝑗(𝑥) = 𝑃(𝜉𝑛+1 = 𝑗�|𝜉𝑛 = 𝑖, 𝜗𝑛+1 = 𝑥).  (23) 

The function �𝑎𝑖𝑗(𝑥), 𝑥 ≥ 0 represents the transition probability from the 

state �𝑖� to state �𝑗� under condition that duration of the state �𝑖� is equal to �𝑥. From 

(22) it follows that matrices  

𝑎(𝑥) = [�𝑎𝑖𝑗(𝑥):��𝑖, 𝑗 ∈ 𝑆�]  and  𝐺(𝑥) = [�𝛿𝑖𝑗 �𝐺𝑖(𝑥):��𝑖, 𝑗 ∈ 𝑆�] 

determine the kernel �𝑄(𝑡) = [�𝑄𝑖𝑗(𝑡):�𝑖, 𝑗 ∈ 𝑆�]. Therefore a triple �(𝑝, 𝑎(𝑥), 𝐺(𝑥)) 

defines the continuous time semi-Markov process with a discrete state space �𝑆. 

In conclusion, three equivalent ways of determining the semi-Markov process 

are presented in this section:  

 by pair �(𝑝, 𝑄(𝑡)); 

 by triple �(𝑝, 𝑃, 𝐹(𝑡)); 

 by triple �(𝑝, 𝑎(𝑥), 𝐺(𝑥)).  

It should be added that there exist other ways to define of semi-Markov 

process [7, 10]. Presented here ways of defining SMP seem to be most useful in 

applications. 

CONNECTION BETWEEN SEMI-MARKOV AND MARKOV PROCESS 

A discrete state space and continuous time semi-Markov process is a genera-

lisation of that kind of Markov process. The Markov process can be treated as a special 

case of the semi-Markov process. 

Theorem 1. Every homogeneous Markov process {𝑋(𝑡):�𝑡�≥ 0} with the discrete space S 

and the right-continuous trajectories keeping constant values on the half-intervals, 

given by the transition rate matrix 𝛬 = [𝜆𝑖𝑗:��𝑖, 𝑗 ∈ 𝑆],����0 < −𝜆𝑖𝑖 = 𝜆𝑖 < ∞� is the 

semi-Markov process with the kernel  𝑄(𝑡) = [�𝑄𝑖𝑗(𝑡):��𝑖, 𝑗 ∈ 𝑆�], where  



Franciszek Grabski 

32  Zeszyty Naukowe AMW — Scientific Journal of PNA 

 𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗(1 − 𝑒−𝜆𝑖 𝑡),    𝑡 ≥  0,      𝑝𝑖𝑗 =
𝜆𝑖𝑗

𝜆𝑖
    for     𝑖 ≠ 𝑗,    𝑝𝑖𝑖 = 0.  (24) 

P r o o f  [5]. From definition of HMP transition rates we have:  

𝑝𝑖𝑗(ℎ) = 𝑃{𝑋(𝑡 + ℎ) = 𝑗| 𝑋(𝑡) = 𝑖} = {
𝜆𝑖𝑗ℎ + 𝑜(ℎ)    for     𝑖 ≠ 𝑗

1 + 𝜆𝑖𝑖ℎ + 𝑜(ℎ)    for     𝑖 = 𝑗
 , 

where 

lim
ℎ→0

𝑜(ℎ)

ℎ
= 0. 

The process having stepwise, right-continuous trajectories is separable. 

Since, for some   ℎ > 0, we have  

𝑃(𝑋(𝑘ℎ) = 𝑗, 𝑋(𝑠) = 𝑖, 𝑠 ∈ (0, (𝑘 − 1)ℎ) | 𝑋(0) = 𝑖) =

= 𝑃({𝑋(𝑘ℎ) = 𝑗} ∩ ⋂

𝑘−1

𝑟=1

𝑋(𝑟ℎ) = 𝑖 | 𝑋(0) = 𝑖) =

= 𝑃(𝑋(𝑘ℎ) = 𝑗 | 𝑋((𝑘 − 1)ℎ) = 𝑖) ⋅ 𝑃(𝑋((𝑘 − 1)ℎ) = 𝑖 | 𝑋((𝑘 − 2)ℎ) = 𝑖) …

… ⋅ 𝑃(𝑋(ℎ) = 𝑖 | 𝑋(0) = 𝑖) = 𝑝𝑖𝑗(ℎ)𝑝𝑖𝑖
𝑘−1(ℎ),

 

𝑝𝑖𝑗 = 𝑃(𝑋(𝜏𝑛+1) = 𝑗 | 𝑋(𝜏𝑛) = 𝑖) = 𝑃(𝑋(𝜏1) = 𝑗|𝑋(0) = 𝑖) =

= lim
ℎ→0

𝑃(⋃

∞

𝑘=1

𝑋(𝑘ℎ) = 𝑗, 𝑋(𝑠) = 𝑖   for   𝑠 ∈ (0, (𝑘 − 1)ℎ)|𝑋(0) = 𝑖) =

= lim
ℎ→0

∑

∞

𝑘=1

𝑝𝑖𝑗(ℎ)𝑝𝑖𝑖
𝑘−1(ℎ) = lim

ℎ→0

𝑝𝑖𝑗(ℎ)

1 − 𝑝𝑖𝑖(ℎ)
= lim

ℎ→0

𝜆𝑖𝑗ℎ + 𝑜(ℎ)

1 − [1 + 𝜆𝑖𝑖ℎ + 𝑜(ℎ)]
= −

𝜆𝑖𝑗

𝜆𝑖𝑖
=

𝜆𝑖𝑗

𝜆𝑖

. 

For 𝑖 = 𝑗 we obtain  

𝑝𝑖𝑖 = 1 − ∑

𝑗≠𝑖

𝑝𝑖𝑗 = 1 − ∑

𝑗≠𝑖

𝜆𝑖𝑗

𝜆𝑖
= −

∑𝑗∈𝑆 𝜆𝑖𝑗

𝜆𝑖
= 0. 

Let 𝑡 = 𝑙ℎ. Similar way we get  

𝑄𝑖𝑗(𝑡) = 𝑃(𝑋(𝜏𝑛+1) = 𝑗, 𝜏𝑛+1 − 𝜏𝑛  𝑡 | 𝑋(𝜏𝑛) = 𝑖) = lim
ℎ→0

∑

𝑙

𝑘=1

𝑝𝑖𝑗(ℎ)𝑝𝑖𝑖
𝑘−1(ℎ) =

lim
ℎ→0

𝑝𝑖𝑗(ℎ)[1 − 𝑝𝑖𝑖
𝑙 (ℎ)]

1 − 𝑝𝑖𝑖(ℎ)
=

𝜆𝑖𝑗

𝜆𝑖
lim
ℎ→0

[1 − 𝑝𝑖𝑖
𝑙 (ℎ)] = 𝑝𝑖𝑗 lim

ℎ→0
[1 − (1 + 𝜆𝑖𝑖ℎ + 𝑜(ℎ))𝑙].
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If   ℎ → 0  , then   𝑙 → ∞. Since  

𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗[1 − lim
𝑙→∞

(1 + 𝜆𝑖𝑖
𝑡

𝑙
)

𝑙
] =

= 𝑝𝑖𝑗 {1 − [lim
𝑙→∞

(1 +
1
𝑙

𝜆𝑖𝑖𝑡

)

𝑙

𝜆𝑖𝑖𝑡

]

𝜆𝑖𝑖 𝑡

} = 𝑝𝑖𝑗(1 − 𝑒−𝜆𝑖 𝑡)
. 

From this theorem it follows that the length of interval  [𝜏𝑛, 𝜏𝑛+1)  given 

states at instants 𝜏𝑛 and 𝜏𝑛+1 is a random variable having an exponential 

distribution with parameter independent of state at the moment 𝜏𝑛+1:  

𝐹𝑖𝑗(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛  ≤  𝑡 | 𝑋(𝜏𝑛) = 𝑖, 𝑋(𝜏𝑛+1) = 𝑗) = 1 − 𝑒−𝜆𝑖 𝑡,    𝑡 ≥  0. 

As we know, the function  𝐹𝑖𝑗(𝑡)  is a cumulative probability distribution of 

a holding time in the state  𝑖, if the next state is  𝑗. Let us recall that the function  

𝐺𝑖(𝑡) = ∑

𝑗∈𝑆

𝑄𝑖𝑗(𝑡) = 1 − 𝑒−𝜆𝑖 𝑡,    𝑡 ≥ 0 

is a CDF of a waiting time in the state  𝑖. For the Markov process, holding times  𝑇𝑖𝑗 ,

𝑖, 𝑗 ∈ 𝑆  and waiting times  𝑇𝑖 , 𝑗 ∈ 𝑆  have the identical exponential distributions 

with parameters  𝜆𝑖 =
1

𝐸(𝑇𝑖)
, 𝑖 ∈ 𝑆   that do not depend on state  𝑗. 

ILLUSTRATIVE EXAMPLE 

Now we take under consideration the reliability model of a renewable two- 

-component series system under assumption that the times to failure of booth 

components denoted as  𝜁1, 𝜁2 are exponentially distributed with parameters  𝜆1  

and  𝜆2 but the renewal (repair) times of components are the non-negative random 

variables 𝜂1, 𝜂2 with arbitrary distributions defined by CDF 𝐹𝜂1
(𝑡), 𝐹𝜂2

(𝑡). We 

suppose that the above considered random variables and their copies are mutually 

independent. First we have to determine the process states: 

1 −  𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑛𝑒𝑤𝑎𝑙 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (𝑑𝑜𝑤𝑛 𝑠𝑡𝑎𝑡𝑒); 

2  −  𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑛𝑒𝑤𝑎𝑙 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (𝑑𝑜𝑤𝑛 𝑠𝑡𝑎𝑡𝑒); 

3  −  𝑤𝑜𝑟𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚  𝑏𝑜𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑢𝑝. 
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A renewal kernel is given by the rule 

𝑄(𝑡) = [

0 0 𝑄13(𝑡)
0 0 𝑄23(𝑡)
𝑄31(𝑡) 𝑄32(𝑡) 0

]. 

Using the assumptions we calculate all elements of this matrix. 

𝑄13(𝑡) = 𝐹𝜂1
(𝑡),       𝑄23(𝑡) = 𝐹𝜂2

(𝑡); 

𝑄31(𝑡) = 𝑃(𝜁1 ≤  𝑡, 𝜁1 > 𝜁2) = ∬

𝐷13

𝜆1𝑒−𝜆1 𝑥 𝜆2𝑒−𝜆2 𝑦𝑑𝑥 𝑑𝑦, 

where 

𝐷31 = {(𝑥, 𝑦):  𝑥 ≤ 𝑡, 𝑦 > 𝑥}. 

Thus  

𝑄31(𝑡) = ∫

𝑡

0

 𝜆1𝑒−𝜆1 𝑥 𝑒−𝜆2 𝑥𝑑𝑥 =
𝜆1

𝜆1 + 𝜆2
(1 − 𝑒−(𝜆1+𝜆2) 𝑡). 

In the same way we obtain  

𝑄32(𝑡) =
𝜆2

𝜆1 + 𝜆2
(1 − 𝑒−(𝜆1+𝜆2) 𝑡). 

So the model the reliability model of a renewable two-component series 

system was constructed.  

CONCLUSIONS 

The main goal of this paper is to present and explain the basic concepts of 

the semi-Markov process theory. Expected next publications will cover applications 

of the semi-Markov process in the reliability and operation of the ships systems. 

The peper provides the definitions and basic properties related to a discrete state 

space semi-Markov process. The semi-Markov process is constructed by the so- 

-called Markov renewal process. The Markov renewal process is defined by the 

transition probabilities matrix, called the renewal kernel, and by an initial disribution. 

It follows from the definition of the SMP that future states of the process and their 
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sojourn times do not depend on past states and their sojourn times if a present 

state is known. Let us add that the initial distribution  𝑝 and the kernel 𝑄(𝑡) define 

completely the SMP. Moreover two equivalent ways of determining the semi-Markov 

process are presented in this section:  

 by triple  (𝑝, 𝑃, 𝐹(𝑡)); 

 by triple  (𝑝, 𝑎(𝑥), 𝐺(𝑥)).  

In the paper connection between semi-markov and markov process is shown. 

A discrete state space and continuous time semi-Markov process is a generalisation 

of that kind of Markov process. The Markov process can be treated as a special case 

of the semi-Markov process. From presented here theorem it follows that the length 

of interval  [𝜏𝑛, 𝜏𝑛+1)  given states at instants 𝜏𝑛 and 𝜏𝑛+1 is a random variable 

having an exponential distribution with parameter independent of state at the 

moment 𝜏𝑛+1:  

𝐹𝑖𝑗(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛  ≤  𝑡 | 𝑋(𝜏𝑛) = 𝑖, 𝑋(𝜏𝑛+1) = 𝑗) = 1 − 𝑒−𝜆𝑖 𝑡,    𝑡 ≥  0. 

The function denoting a CDF of a waiting time   𝑇𝑖 ,   in the state 𝑖  has also 

identical exponential distributions with parameters  𝜆𝑖 =
1

𝐸(𝑇𝑖)
: 

𝐺𝑖(𝑡) = ∑𝑗∈𝑆 𝑄𝑖𝑗(𝑡) = 1 − 𝑒−𝜆𝑖 𝑡,    𝑡 ≥ 0. 

It means that the semi-Markov processes allow  to construct the models for 

a wider class of problems. 
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K O N C E P C J A  P R O C E S U  S E M I - M A R K O W A  

STRESZCZENIE 

Artykuł przedstawia definicje i podstawowe cechy procesu semi-Markowa dyskretnego stanu 

przestrzeni. Proces semi-Markova jest zbudowany przez tzw. proces odnawiania Markova, który 

jest specjalnym przypadkiem dwuwymiarowego ciągu Markova. Proces odnawiania Markova jest 

zdefiniowany przez macierz prawdopodobieństw przejściowych, zwaną jądrem odnawiania, i po-

czątkowy rozkład lub przez inne charakterystyki, które są równe jądru odnawiania. Proces obli-

czeniowy odpowiadający procesowi semi-Markova pozwala na określenie koncepcji regularności 

procesu. W artykule przedstawiono również pozostałe metody określania procesu semi-Markova. 

Przedstawione koncepcje są zaprezentowane na prostym przykładzie.  

Słowa kluczowe:  

proces semi-Markova, macierz prawdopodobieństw. 


