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ABSTRACT 

In this paper, there has been constructed such a model of the non-classical Bittner operational 

calculus, in which the derivative  related to Horadam sequences is understood as a difference 

operation . 
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INTRODUCTION 

 For any functions  as well as for every 

 and  the fundamental theorems of the integral calculus apply [1]: 

  

Using linear operations 

  (1) 

we can present the above theorems as follows: 
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  (2) 

where 1. 

 
 Apart from the model (1) with the classical ordinary derivative , 

there exist other continuous and discrete models in which, for appropriately de-

termined operations , properties (2) hold. These models constitute particular 

cases (representations) of the so-called non-classical Bittner operational calculus [2–5]. 

 Broadly speaking, the Bittner operational calculus is a system 

 2, (3) 

in which  and  are linear spaces (over the same scalar field ) such that . 

The linear operation  (denoted as ), called the (ab-

stract) derivative, is a surjection. Moreover,  is a set of indices  for the operations 

 and  such that  and , 

. These operations are called integrals and limit conditions, respectively. The 

kernel of , i.e.  is a set of elements understood as constants for the derivative 

. The limit conditions  are projections of  on the subspace . 

 Beside the continuous model (2), we frequently use a classical discrete  

model with the derivative  understood as the forward difference . 

 Let  and  mean the set of non-negative integers and the set of complexes, 

respectively. Moreover, let  be a linear space of complex sequences 

 with usual sequences addition and sequences multiplication by com-

plexes. In [2, 3, 5] Bittner considered a model with the derivative 

  

and its corresponding integral 

  

and limit condition 

  

where .  

                                                 
1   stands for the symbol of the function , i.e. , whereas  denotes the value of 

the function  at point . This notation is derived from J. Mikusiński [15]. 
2   stands for the French ‘calcul opératoire’ (operational calculus). 
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Later, in [6] there appeared a model with the forward difference , integrals 

  

and limit conditions 

  

 
where . 

 
 Notice that the integrals  can be shown as follows 

 3. 

 In this paper, we shall discuss other discrete models of the Bittner opera-

tional calculus related to the operation 

  (4) 

where  and .  

 
We will consider two cases: 

    and   . 

 In literature (e.g. [7, 12, 14, 16]), each element  belonging to the kernel of 

the operation (4) is called a Horadam sequence [8, 9]. 

 In particular, the Horadam sequence , i.e. a solution of the 

equation 

  (5) 

can be [10]: 

 the Fibonacci sequence  (for ) 

 ; 

                                                 
3  Given the definition of , we assume that . 
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 the Lucas sequence  (for ) 

 ; 

 the Pell sequence  (for ) 

 ; 

 the Pell-Lucas sequence  (for ) 

 ; 

 the Jacobsthal sequence  (for ) 

 ; 

 the Jacobsthal-Lucas sequence  (for ) 

  

 Another interesting example is also an anti-forward Fibonacci sequence 

, for which . Then, we have 

  

from which we obtain 

  

We also have 

  (6) 

 In [13] Kalman and Mena presented two-term recurrences (5) and related 

Horadam sequences in the operational approach, using classical difference operations. 

A MODEL WITH THE HORADAM DIFFERENCE, WHEN  

 In what follows, we shall call the operation (4) a Horadam derivative or 

difference.  

 Let 
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Then, we have 

  

and 

  

 We will prove the following 

 Theorem 1. The system (3), where 

 and 

  (7) 

  (8) 

  (9) 

forms a discrete model of the Bittner operational calculus with the Horadam diffe-

rence (7), when . 

 Proof. It is obvious that (7) – (9) are linear operations. It is also easy to 

verify that  can be presented in the form of  

  

where  for . 

 
 Let . Hence 
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so  holds.  

 Let . Then 
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Therefore,  also holds, which completes the proof.     

 Example 1. It is not difficult to check (see Th. 3[5]) that an abstract diffe-

rential equation 

  

with the limit condition 

  

has exactly one solution 

  (10) 

A. In particular, 

  

is the solution of the homogeneous difference equation 

  

with initial conditions 

  

which results from the limit condition form (9) for  and . 

Hence we have 

  

It is a form (6) of the anti-forward Fibonacci sequence  general term, where 

  

is a well-known Binet formula of the Fibonacci sequence  general term. 

B. For the Cauchy problem 
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  (11) 

  

we have  and for , on the basis of (10), we obtain 

  

Similarly, if 

  (12) 

  

then  and for , we get 

  

The sequence , defined with the use of Jacobsthal numbers as 

  

was introduced in [11], where Horadam gave a number of its properties, including 

(11) and (12). 

A MODEL WITH THE HORADAM DIFFERENCE, WHEN  

 If the Horadam difference (4) takes a particular form of 

  

then . For this case, we will prove. 

 Theorem 2. The system (3), where 

 and 

  (13) 
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  (14) 

  (15) 

forms a discrete model of the Bittner operational calculus with the Horadam diffe-

rence (13). 

 Proof. Similarly as before, the operations (13)–(15) are linear. Moreover, if 

, then 

  

If, in turn, , then 
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M O D E L  D Y S K R E T N Y   
N I E K L A S Y C Z N E G O  R A C H U N K U  O P E R A T O R Ó W  

Z  R Ó Ż N I C Ą  H O R A D A M A  

STRESZCZENIE 

W artykule skonstruowano model nieklasycznego rachunku operatorów Bittnera, w którym 

pochodna , związana z ciągami Horadama, rozumiana jest jako operacja różnicowa  

. 
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