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* *  Nature loves logarithmic spirals * *  
Mario Livio [22] 

ABSTRACT 

Parametric descriptions of spirals being analogues of the logarithmic spiral are determined using 

the concept of the exponential element in the non-classical Bittner operational calculus and ap-

plying the chosen models of it. 
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INTRODUCTION 

One-parameter family of the logarithmic spirals 

  (1) 

where  is the family parameter and 
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is the set of plane curves which cross the boundle of lines passing through the point 

 of the polar coordinate system  at a constant angle . 

 The above-mentioned property substantiates the concept of the equiangular 

spiral1 for any curve from the considered family. 

From (1), for any  we get 

  

This identity substantiates the concept of the logarithmic spiral2, as for 

any point  of that curve its amplitude  is proportional to the logarithm of 

the part  of the radius  of the point. 

 If the ratio , equal to the golden number (cf. (31)) 

  

corresponds to the amplitude , then the logarithmic spiral is called the golden 

one. 

 Thus, for the golden spiral we have 

  

 The concept of a spiral (1) was introduced by a French philosopher, 

mathematician and physicist René Descartes (1596–1650) (Latin: Cartesius). He 

described its definition, based on equiangularity, in 1638 in a letter to his 

schoolmate of Jesuit College — Marin Mersenne (1588–1648), a mathematician 

and frater minimorum. 

 At the turn of the XVII and XVIII centuries the Cartesian spiral was also 

studied by Evangelista Torricelli, Pietro Nicolas, Pierre Varignon, John Wallis and 

Edmund Halley. However, it was Jacob Bernoulli who was extremely fascinated 

with algebraic and geometric properties of the Cartesian spiral, especially with its 

                                                 
1  The term was introduced in 1714 by Roger Cotes (1682–1716), English mathematician and as-

tronomer. 
2  The term was introduced in 1691 by Jacob Bernoulli (1654–1705), Swiss mathematician and 

physicist. 
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self-similarity. He called it a Marvelous Spiral (Latin: Spira Mirabilis) in 1692 in 

the German scientific journal Acta Eruditorum [5], [6], [16], [29]. 

 Using the relation 

  

between the point coordinates  in a polar system and its coordinates  in 

an orthocartesian system we conclude that the curves (1) have their parametric 

descriptions 

  (2) 

Next, on the basis of the Euler formula and from (2) we obtain the com-

plex form of the spiral family (1): 

  (3) 

where ‘ ’ means the imaginary unit. 

 

 A logarithmic spiral 

  (4) 

which is the hodograph of the vector function 

  (5) 

where  and , is a generalization of (3) for a fixed . 

 

 If , then (5) is a circle, while when  it is a half-line ( ) or  

a segment ( ) on the abscissas axis. They are the degenerate cases, and we will 

not study them. 

 Increasing the parameter , the movement of points on next spiral 

coils starts with its pole  and it is anticlockwise if , while it is clock-

wise when . These points draw from the pole  when  and go to the 

origin  of the spiral if . The sequence of points 
3 of the spiral on the complex plane, the radii of 

                                                 
3   means the set of positive integers. 
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which form the geometric sequence , corresponds to the pa-

rameters  forming the arithmetic sequence . In this connection, 

in 1693 the Italian mathematician Pietro Nicolas described this spiral as geometric, 

differentiating it from the arithmetic spiral of Archimedes. 

 The curve (5) is an equiangular spiral, as on the basis of4 

  (6) 

we get the measure of : 

  

which is independent of . 

 

 The arc length of the Cartesian spiral from its pole  to any point  corre-

sponding to a parameter  is calculated from the formula 

  (7) 

 Thus, using (5) we obtain 

  (8) 

 Hence, it follows that the spiral ‘coiling itself’ to the origin  (i.e. when 

) has a finite length 

  

The curvature of the logarithmic spiral is determined on the basis of5 

  (9) 

                                                 
4  ‘ ’ means the inner product operation. 
5  ‘ ‘ means the quasi-inner product operation. 



Spira Mirabilis in the selected models of Bittner operational calculus 

4 (203) 2015  69 

Taking (5) under consideration, we get 

  (10) 

 

 

Fig. 1. Anticlockwise coiling itself logarithmic spiral: 
6 

 

 Figure 2 presents the graph of the golden spiral 

  

If , then 

      and      

Moreover, 

      as      

and 

      as      

                                                 
6  The symbolic and numerical computations as well as the graphs used in this paper were made 

using the Mathematica® program. 



Hubert Wysocki 

70  Zeszyty Naukowe AMW — Scientific Journal of PNA 

where  is a general term of the Fibonacci sequence determined by the Binet formula 

  (11) 

(cf. (30)). 
 

 
Fig. 2. The golden spiral 

 

 For the golden spiral we also have 

  

 Let . Notice that the function 7 defining the logarithmic 

spiral (4) constitutes the solution of the Cauchy problem 

  

which can be presented in a form of 

  (12) 

                                                 
7   means a symbol of a function , whereas  means the value of  at the point . 

In particular,  is a constant function equal to the value  in its domain. This notation 

derives from J. Mikusiński [23]. In what follows, we will omit the brackets  whenever this 

does not cause ambiguity. 
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where 

  (13) 

and . 
 
 From the fundamental theorems of the integral calculus it follows that  

and 

  (14) 

are such operations that 

  (15) 

where . 
 

Considering (15), the operations (13), (14) belong to the so-called classical 

continuous model (representation) of the Bittner operational calculus [2–4] with the 

ordinary derivative . 

 There exist various continuous and discrete models of the Bittner opera-

tional calculus, in which the properly defined operations  have the properties 

of (15). We present here how the solutions of the problem (12) generate ‘the loga-

rithmic spirals’ in the selected models of that calculus. 

FOUNDATIONS OF THE NON-CLASSICAL BITTNER OPERATIONAL CALCULUS 

The Bittner operational calculus is referred to as a system8 

  (16) 

where  and  are linear spaces (over the same field  of scalars9) such that 

. The linear operation  (denoted as ) called the 

(abstract) derivative, is a surjection. Moreover,  is a set of indices  for the opera-

tions  such that , called integrals and for the operations 

                                                 
8  The abbreviation  is derived from the French calcul opératoire (operational calculus). 
9  In this paper, we shall assume that  is a field  of reals. 
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 such that , called limit conditions. The kernel 

of , i.e.  is called a set of constants for the derivative . 

 

The limit conditions  are projections from  onto the subspace 

. 

 By induction we define a sequence of spaces  such that 

  

Then 

  

and 

  

where 

  

 Let 

  

and 

  

 Assume that  for  is the only solution of a problem 

 10 (17) 

  (18) 

 If there exists an element  satisfying the equation (17) and the limit 

condition (18), then it is called an exponential element (with exponent ). 

The exponential element is uniquely determined. 

                                                 
10  means the set of complexes. 



Spira Mirabilis in the selected models of Bittner operational calculus 

4 (203) 2015  73 

SPIRALS IN CONTINUOUS MODELS 

T h e  m o d e l  w i t h  t h e  E u l e r  d e r i v a t i v e  

Consider all real functions  determined on the interval  

and integrable in such a way that 

  

for any  and . 

 

The discussed set with common addition of functions and common multi-

plication of functions by reals is a linear space . The space  we define in the 

following way: 

  

 In the model with the Euler derivative [1], [3] 

  

the limit conditions 

  

where , correspond to the integrals 

  

In this case the exponential element 

  

where , is the solution of the problem (17), (18). 
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Particularly, for  we get the complex form 

  

and the vector form of the corresponding spiral 

  

It is the Cartesian spiral, as  

    for    

or 

    for    

where  is the vector function (5). 
 

Therefore, the parametric presentations  and  are equivalent. 

 On the basis of (8) and (10), for  we get 

  

T h e  m o d e l  w i t h  t h e  o r d i n a r y  d e r i v a t i v e   

o f  t h e  s e c o n d  o r d e r  

It is easy to verify that we have 

  

for . 
 

 Therefore, the integrals  and the limit conditions 

 correspond to the derivative . 

In particular, the integrals  
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and the limit conditions 

  

where , correspond to the ordinary derivative of the second order 

  

 

 

Fig. 3. Opening out, logarithmic clockwise spiral in the model with the Euler derivative: 
 

 

 In this case, the exponential element (cf. [25]) 

  

is the solution of (17), i.e. 

  

with the initial conditions 

    where    
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that is, with the limit condition (18) of the form 

  

The spiral 

  

where , corresponds to this exponential element. 

 

Figure 4 shows the graphs of the spiral  for various parameters 

, when . 

 

 

 

Fig. 4. The logarithmic spiral in the model with the ordinary derivative of the second order 
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T h e  m o d e l  w i t h  t h e  B e s s e l  d e r i v a t i v e  

The set of all real functions  determined on the interval  

and integrable in such a way that 

  

for any  and , considered as an algebraic structure with common oper-

ations of function addition and of multiplication by real numbers, is the linear 

space . The space  we define as 

  

 The operation 

  (19) 

is called the Bessel derivative (cf. [9]). 

 

 The operation (19) is a superposition of the Euler derivative  and the 

ordinary derivative , i.e. 

  

to which the integrals 

  

and the limit conditions 

  

correspond. 
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Therefore, the integrals 

  

and the limit conditions 

  

that is 

  

where , correspond to the Bessel derivative. 

 

 The function 

  (20) 

is one of the solutions of the equation 

  

In (20)  is a fixed real number and 

  

is the so-called -th order modified Bessel function of the first kind ( ) [18]. 

In this case 
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Therefore, (20) satisfies (17) and the limit condition (18) of the form 

  

i.e. it is the exponential element in the considered operational calculus model (cf. 

[9]). 

 If we present (20) in an algebraic form 

  

then, particularly for , we have 

  

where 

  

is the so-called confluent regularized hypergeometric function [19], while ‘ ’ means 

the complex conjugate operation. 

 The hodograph of the vector function 

  

will be called the Bessel spiral. 

 

 From the figure 5 graphs it follows that the Bessel spiral is opening out 

independently of the parameter  sign. Moreover, it is not an equiangular spiral. 

From computer calculations for a very large range of values of  it follows that the 

measure of  is becoming fixed with an increase of , which is illustrated in figure 6 

graphs. 
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Fig. 5. The Bessel spiral 

 

 

 

Fig. 6. Stabilization of the measure of  for the Bessel spiral 
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T h e  m o d e l  w i t h  t h e  m i x e d  p a r t i a l  d e r i v a t i v e   

o f  t h e  s e c o n d  o r d e r  

Let  and  be the space of all real func-

tions  (with common addition and multiplication by real scalars) deter-

mined and continuous on . Moreover, let  and . 

 The integrals 

  

and the limit conditions 

  

correspond to the mixed partial derivative [4] 

  

 In this case, the exponential element for  is the complex 

function (cf. [25]) 

  (21) 

where . 
 

For a fixed  (or ), (21) is the Bessel spiral (fig. 7). 
 

 
Fig. 7. The Bessel spiral in the model with the mixed partial derivative 
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 The hodograph of the vector function of two variables 

   

where  

  

will be called the Bessel band. 
 

 Figure 8 presents this surface for , when 

 and . 

 

 

 
Fig. 8. The Bessel band 
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SPIRALS IN DISCRETE MODELS 

T h e  m o d e l  w i t h  t h e  s h i f t  o p e r a t i o n  

In a discrete model with a derivative understood as the shift operation (to 

the left) [3], [4] 

  

where  is the real space of infinite real sequences , 

 with common addition of sequences and their multiplication by real num-

bers, when , the limit condition 

  

where  is the Kronecker symbol, i.e. 

  

corresponds to the integral 

  

 In this model the exponential element is the sequence 

  

where . 

 

 Therefore, the hodograph of the vector function 

  (22) 

where  means the main argument of , is a spiral in the considered 

model. It is a discrete spiral if , and a continuous one if  (fig. 9). 
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Fig. 9. Discrete and continuous spirals in the model with the shift operation 

 

 In the case of a continuous spiral, when  and , the points of 

the spiral grow away from its origin if  and converge to it when . 

If , then (22) is a circle. The movement of the points on the spiral is anti-

clockwise if  and clockwise if . The spiral is equiangular as 

  

does not depend on the parameter . 

 

If  and , then (22) reduces itself to the point , while for 

 it is a circle. If  and , then (22) is a segment, while for  it 

is a half-line on the abscissas axis. If  and , then the spiral (22) coils 

itself anticlockwise to the origin , while for  it opens out anticlockwise to 

the pole . 

T h e  m o d e l  w i t h  t h e  f o r w a r d  d i f f e r e n c e  

In [1], [3], [4] there was also considered a discrete model with the derivative 

as a forward difference, i.e. 
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to which the integral 

 11 

and the limit condition 

  

where , correspond. 

 
 It is not difficult to verify that this time the sequence 

  

where , is the solution of (17), (18) with the exponent . 

 
Therefore, the hodograph of the function 

  

is the spiral (22) if 

  

T h e  m o d e l  w i t h  t h e  b a c k w a r d  d i f f e r e n c e  

In [31] the author proved that the system in which 

  (23) 

and 

 12 

  

                                                 
11 It is assumed that .  

12 It is assumed that . 
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where  means the space of two-sided real sequences 

 and 13, forms a discrete representation of the Bittner 

operational calculus with the derivative as the backward difference (23). 

 

 In this case the exponential element (with the exponent ) is a two-sided 

sequence [32] 

  

where .Hence, for , we get 

  (24) 

Considering the fact that , we say that (24) is the hodograph of a two-sided 

spiral. 

 For this type of spiral, there follows the coiling of spiral from the pole  to 

the origin  if  ( ), while when  ( ) the spiral opens 

out from the pole  and thereby moves away from the origin  (fig. 10). 

 Notice also that the hodograph (24) is the spiral (22) for , if 

  

Similarly it happens when . Then, the curve (24) is the spiral (22), if 

  

T h e  m o d e l  w i t h  t h e  c e n t r a l  d i f f e r e n c e  

First, we shall introduce the model of the operational calculus with the cen-

tral difference 

  (25) 

by proving the following theorem: 

                                                 
13  means the set of integers. 
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Fig. 10. Two-sided discrete and continuous spirals in the model  
with the backward difference 

 

Theorem. The system (16), where , , the 

operation  is the central difference (25) and 

  (26) 
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  (27) 

forms the discrete model of the Bittner operational calculus. 
 
Proof. It is easy to notice that the operations (25) – (27) are linear. Let 

. Then for  we obtain 

  

Next, for  and  we have 

  

Whereas if  and , then 

  

For  and  we get 

  

However, if  and , then 

  



Spira Mirabilis in the selected models of Bittner operational calculus 

4 (203) 2015  89 

Finally, we are able to ascertain that the axiom  is satis-

fied. 

 Let . Then, for  we obtain 

  

  

Similarly, if , then 

  

In the end, when , then from the definition of integrals we have 

. Moreover, . In that case 

  

Therefore, the axiom  is also satisfied. 
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 Now, consider the bilateral difference equation 

  (28) 

with the initial conditions 

  (29) 

 The solution of this problem is called a -Fibonacci sequence. It is ex-

pressed by a -Binet formula 

  (30) 

where 

  (31) 

 The real -Fibonacci sequences were considered previously by Gazale 

[14] and Stakhov [28] for  and , while for  and  — by 

Falcón and Plaza [12]. 

 The number  is called a -proportion or a -mean. 

 Vera de Spinadel [26], [27] called  the family of metalic means 

(proportions). For  the proportions are called golden, silver and bronze, 

respectively. 

 For , (30) is a classical two-sided Fibonacci sequence (cf. [8], [13], 

[20], [32]): 

 

 Here, it is also worth to mention a considered in literature [7], [11], [17], 

[30], random -Fibonacci sequence 

  (32) 

related with tossing a symmetric coin. A successive term of the sequence (32) 

(called a Vibonacci sequence [17]) is formed by adding (subtracting) to (from) the 
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term  a component , when in the -th coin toss heads 

(tails) is facing upwards. 

 In the considered operational calculus model, the initial-value problem 

(28), (29) with  can be written as (17), (18), where 

  

Thus, the -Binet formula (30) presents a two-sided sequence, which is 

an exponential element in the model with the central difference (25). 

Taking into consideration that  and , from the 

-Binet formula (30) we obtain 

  

 The hodograph of the function 

  

will be called a two-sided -Fibonacci spiral. 

Its graphs for various values of  parameters are presented in figures 11 and 12. 

 In the classical case, i.e. when , the Kepler formula 

  

holds for the one-sided Fibonacci sequence (11). 
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Fig. 11. Discrete and continuous -Fibonacci spiral 

 

 

Fig. 12. Two-sided discrete and continuous spiral in the model with the central difference 

 

 Let us examine the limits 

  (33) 

in the general case, i.e. when, instead of the sequence (11), we will be considering 

the two-sided -Fibonacci sequence (30). 
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 If , which is equivalent to the condition , then on the basis 

of (30), we obtain 

 

 
Fig. 12. continued 

 

  

Next, if , i.e. , then 

  

For example, for  we have 

   and    

respectively. Therefore, in both cases 

  

 When , notice first that . Because of that 
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 For , which means that  and holds when , 

, the limits (33) are improper. 

INSTEAD OF CONCLUSIONS 

Nature loves logarithmic spirals. From sunflowers, seashells, and whirlpools, 

to hurricanes and giant spiral galaxies, it seems that nature chose this marvelous 

shape as its favorite ‘ornament’ (Mario Livio [22]). 
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S P I R A  M I R A B I L I S  W  W Y B R A N Y C H  M O D E L A C H  
R A C H U N K U  O P E R A T O R Ó W  B I T T N E R A  

STRESZCZENIE 

Korzystając z pojęcia elementu wykładniczego w nieklasycznym rachunku operatorów Bittnera 

oraz stosując wybrane modele tego rachunku, wyznaczono opisy parametryczne spiral będących 

odpowiednikami spirali logarytmicznej. 

Słowa kluczowe:  

spirala logarytmiczna, rachunek operatorów, pochodna, pierwotna, warunek graniczny, element 

wykładniczy. 


