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ABSTRACT 

The paper deals with free vibrations of a uniform asymmetric shaft. As an example of 
asymmetry, a shaft of rectangular cross section is chosen. It is assumed that the shaft is simply 
supported in two bearings and rotates with constant angular velocity, and that the damping forces 
can be neglected. Bending vibrations of the shaft caused by an initial disturbance of its equilibrium 
position are considered. For their description the co-rotating coordinate system and the fixed 
coordinate system are used. The Euler-Bernoulli theory of bending of beams is utilized. 
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INTRODUCTION 

Ship classification societies and designers deal for years with the adverse ef-
fects of vibration [3, 7]. Many years of experience proved that vibration can cause: 

— damage of the structure or shortening of its durability due to material fatigue; 
— incorrect operation or failures in engines and equipment; 
— fatigue of the crew and the resulting decrease of the work efficiency; 
— noise with its different adverse influence upon the comfort and health of the 

crew. 

The literature also shows that vibration may modify crewmember perception 
(e.g. reading text and instruments, depth perception), influence task control move-
ments (e.g. tactile sense, head/hand movements, manual tracking) and lead to im-
pairment of speech. These factors may result in increased crewmember reaction/ 
response times and possibility of human error [2]. 
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Vibration can be classified in several ways. One of the important classifica-
tions is that of free and forced vibrations. If a system, after an initial disturbance, is 
left to vibrate on its own, the ensuing vibration is known as free vibration. Examples 
of it are the oscillation of a pendulum or the vertical oscillatory motion felt by  
a bicyclist after hitting a road bump. If a system is subjected to an external time- 
-varying force, the resulting vibration is known as forced vibration. The oscillation 
that arises in machines such as diesel engines or the vibration produced by an un-
balanced rotor are examples of forced vibration. 

Important parameters in the design stage or measurement, as well as in 
evaluation, analysis and prevention of shipboard vibration, are concerned with pro-
peller-induced vibration, machinery-induced vibration and wave-induced vibration 
[4, 7]. The propeller blades operate in the nonuniform wake field between the ship 
afterbody and rudder. Consequently, the blade loads vary with time which results in 
shafting vibration, hull girder vibration and local vibration of the superstructure, 
mast house etc. as well as in pressure pulses on the stern plating. 

The main source of machinery-induced vibration are internal combustion 
engines (main and auxiliary), where the excitation forces come from [9]: 

— pressure pulsations in the inlet and outlet ducts; 
— pressure changes in cylinders during the combustion process; 
— inertia of moving engine elements; 
— operation of the timing gear; 
— toothed gears; 
— pressure changes in fuel and lubrication systems; 
— auxiliary devices. 

The usual way to reduce the negative effects of mass forces from moving 
engine elements is balancing. Counterweights are used primarily to balance single 
cranks internally. In engines having an even number of cranks they are arranged 
symmetrically so that the moving masses balance each other out. These engines are 
said to be externally balanced. In engines with any odd number of cranks special 
balancing holes in the flywheel, additional weights at the free end of the crankshaft, 
additional counterclockwise rotating wheel with a balancing mass, non-equidistant 
angles between different cranks, etc. are used [9]. Also all possible firing orders are 
analyzed be means of special software and the optimum one is chosen. 

The wave-induced load acting on the ship hull will cause primarily the ship 
to respond in a steady-state motion. In this case, the wave load will induce ship de-
flection, which includes the rigid body modes as well as her elastic deformation 
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modes. However, heavy seas may cause also free vibration of the ship hull and 
equipment. In particular, the bottom-impact slamming as a source of high dynamic 
loads and free vibrations is very important to small and medium-size ships as well as 
to high-speed vessels. 

The subject of this paper are free vibrations of an asymmetric shaft under 
assumptions that the initial conditions are known and that the damping forces can be 
neglected. As an example, similarly as in [5] the uniform shaft of rectangular cross 
section is taken. 

DESCRIPTION OF THE VIBRATING SYSTEM 

Consider a horizontal shaft of length l and angular velocity ω, simply sup-
ported (pinned) in bearings at the ends (fig. 1). 

 

 
Fig. 1. Scheme of the vibrating system 

Source: own study. 
 

For describing its free vibration we shall use the fixed coordinate system 
OXYZ and the co-rotating coordinate system Oxyz. The axes X and x are lying along 
the line of centers of the bearings, Y is the horizontal axis and Z is the vertical axis, 
and y and z are the axes parallel to the principal axes of inertia of the cross sections 
of the shaft. In figure 2 the axes of symmetry y′ and z′ of an arbitrary cross section 
are shown which are in common with the principal axes of inertia of this cross sec-
tion. The cross-sectional dimensions are bxh. 
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Fig. 2. Translations of the geometric center C of an arbitrary cross section  

of the shaft in displaced condition 

Source: own study. 
 

The instantaneous angular position of the shaft is determined by the angle 
ϕω +t  between the axes y and Y, where ϕ is thy angle at which the shaft is dis-

turbed from its equilibrium position. The instantaneous deflection of the shaft axis is 
determined by the coordinates Y(X, t) and Z(X, t) of geometric centers of cross sec-
tions of the shaft in the fixed coordinate system or, alternatively, by the coordinates 
y(x, t) and z(x, t) of these centers in the rotating coordinate system. According to 
figure 2, the coordinate transformations are: 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )ϕωϕω

ϕωϕω
+++==
+−+==

ttxzttxytxZtXZ
ttxzttxytxYtXY

cos,sin,,,
sin,cos,,,

. (1) 

FREE VIBRATION OF THE CONSIDERED SHAFT 

In order to analyse the lateral vibration of the shaft, the Euler-Bernoulli theory 
of bending of beams [1, 6, 8] can be utilized. In accordance with this theory, the 
lateral free vibration ( )t,xw  of a uniform beam is governed by equation: 
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where: 
E — Young’s modulus; 
I — axial moment of inertia of the cross section of the beam; 
S — cross-sectional area of the beam; 
ρ — mass density of the beam. 
 

Since the equation of motion involves a second-order derivative with respect 
to time and a fourth-order derivative with respect to x, two initial conditions and four 
boundary conditions are needed for finding a unique solution for ( )txw , . Usually, the 
initial values of lateral displacement and velocity are specified as ( ) ( )xwxw 00  and &  at 

0=t , so that the initial conditions become 

 ( ) ( )xwtxw 00, == ; (3) 

 ( ) ( )xwtx
t
w

00, &==
∂
∂ . (4) 

The free vibration solution can be found using the method of separation of 
variables as 
 ( ) ( ) ( )tTxWtxw =, . (5) 

Substituting Eq. (5) into Eq. (2) and rearranging lead to 

 ( )
( )

( )
( ) 2

2

2

4

4 1
Ω=⋅−=⋅

dt
tTd

tTdx
xWd

xSW
EI

ρ
, (6) 

where 2Ω  is a positive constant.  
 Eq. (6) can be written as two equations: 

 ( ) ( ) 04
4

4
=− xW

dx
xWd β ; (7) 

 ( ) ( ) 02
2

2
=Ω+ tT

dt
tTd , (8) 

where 

 
EI
S 2

4 Ω
=
ρβ . (9) 
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The solution of Eq. (8) can be expressed as 

 ( ) tLtKtT Ω+Ω= sincos , (10) 

where K and L are constants that can be found from the initial conditions and Ω  is 
the natural frequency of vibration.  

For the solution of Eq. (7) we assume 

 ( ) xCexW s= , (11) 

where C and s are constants, and derive the auxiliary equation as 

 044 =− βs . (12) 

The roots of this equation are 

 ββ iss ±=±= 4,32,1 , , (13) 

where ( ) 2/11−=i .  

Hence the solution of Eq. (7) becomes 

 ( ) xhCxhCxCxCxW ββββ sincossincos 4321 +++= . (14) 

The constants 41 CC −  can be found from the boundary conditions. For  
a simple supported (pinned) end of the beam the boundary conditions are 

 0moment bending,0deflection 2

2
=

∂
∂

===
x
wEIw . (15) 

The function ( )xW  is known as the normal mode function of the beam. For any 
beam, there will be an infinite number of normal modes ( )xWn  with one natural frequency 

 ( )
2/1

4
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ω

Sl
EIlnn ρ

β  (16) 

associated with each normal mode. For a pinned-pinned beam the values of lnβ  
amount to 
 ,...2,1; == nnln πβ  (17) 

and the normal modes are given by 

 ( )
l
xnxxW nn

πβ sinsin == . (18) 
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Consequently, the free vibration solution for a pinned-pinned beam can be 
written as [1, 6, 8] 

 ( ) ( )∑
∞

=

Ω+Ω=
1

sinsincos,
n

nnnn l
xntLtKtxw π , (19) 

where the constants nn LK  and  can be found from the initial conditions (3) and (4).  

If 

 ( ) ( )
l
xvxwxw πsin,0 000 == & , (20) 

then 

 

l
xn

l
xv

LK
n

nn π

π

sin

sin
,0

0

Ω
== , (21) 

so that 

 ( ) ∑
∞

=

Ω
Ω

=
1

0 sin1sin,
n

n
n

t
l
xvtxw π . (22) 

Passing now to the free vibration of the considered shaft, for the sake of 
simplicity it is convenient to project its deflection ( )txw ,  on the axes y and z of the 
rotating coordinate system. Then the displacement of the shaft axis is determined by 
its components ( ) ( )txztxy , and ,  which are governed by equations: 
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( ) ( ) 0,,

0,,

2

2
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ρ
, (23)  

where (see fig. 2) 

 
12

,
12

3

'

3

'
hbIbhI zy == . (24) 

Similarly, the initial conditions (3) and (4) can be resolved into the compo-
nents ( ) ( ) ( ) ( )., and , 0000 xzxyxzxy &&  In the case of Eqs (20) we have (see fig. 3): 

 
( ) ( )

( ) ( ) ϕπ

ϕπ

cossin,0

sinsin,0

000

000

l
xvxzxz

l
xvxyxy

==

==

&

&

. (25) 
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Fig. 3. Components 00  and zy &&  of the initial velocity 0w&  of the shaft axis  

at an arbitrary cross section 

Source: own study. 
 

As in Eq. (19), the solutions of Eqs (23) can be determined using the mode 
superposition principle. For this, the deflections of the shaft are assumed as 

 

( ) ( ) ( )

( ) ( ) ( )∑

∑
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=
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=

=
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1
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,

,
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nn
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, (26) 

where ( ) ( )xZxY nn  and  are the n-th normal mode functions satisfying equations 
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. (27) 

In Eqs (26), ( ) ( )tzty nn  and  are the generalized coordinates in the n-th 

modes ( ) ( )xZxY nn  and  expressed by 
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and 
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are the n-th natural frequencies of bending vibrations of the shaft in the directions  
y and z, respectively. That angular velocity of the shaft which equals one of the fre-
quencies (29) is defined in [5] as a critical speed of the shaft. 

Following the results obtained for a beam, for a pinned-pinned shaft of  
rectangular cross section is 

 ( ) ( )
l
xnxZxY nn

πsin== , (30) 

so that 
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In the case of initial conditions (25), the constants in Eqs (31) become 
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Consequently, the coordinates of the shaft axis in the rotating coordinate system are 
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The solutions (33) can be rewritten as 

 
( ) ( ) ( )
( ) ( ) ( ) ϕ

ϕ
cos,
sin,

tcxatxz
tbxatxy

=
=

, (34) 
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∞
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The next step will be the transformation of the solutions (34) to the fixed 
coordinate system by means of Eqs (1) which yields 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }ttctbttctbxatxY ωϕϕωϕϕ sincossincoscossin, 22 −−−= ; (36) 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }ttctbttctbxatxZ ωϕϕωϕϕ sincossincoscossin, 22 −++= . (37) 

By defining a complex quantity ( )ast,xV  

 ( ) ( ) ( )txiZtxYtxV ,,, +=  (38) 

and by adding Eq. (36) to Eq. (37) multiplied by i , a single equation of lateral mo-
tion of the shaft axis is obtained 

 
( ) ( ) ( ) ( )[ ] ( ){ }( )

( ) ( ) ( )tittcxia

tittibtctbxatxV

ωωϕ

ωωϕϕϕ

sincoscos

sincossincossin,
2

2

−+

+++−=
 (39) 

or, using a vector notation, 

 ( ) ( ) ( ) titi etxvetxutxV ωω −+= ,,, . (40) 

The vectors ( ) ( )txvtxu , and ,  represent the following complex numbers 

 ( ) ( ) ( ) ( )[ ] ( ){ }ϕϕϕ 2sincossin, tibtctbxatxu +−= ; (41) 

 ( ) ( ) ( ) ϕ2cos0, tcxiatxv += . (42) 

The moduli ( ) ( ) ( ) ( ) ( ) ( )are , and ,  vectors theof , arguments and ,,, txvtxutttxvtxu ψφ  

 ( ) ( ) ( ) ( )[ ] ( ) ( ){ } 2/14222 sincossin, ϕϕϕ tbtctbxatxu +−= ; (43) 

 ( ) ( ) ( ) ϕ2cos , tcxatxv = ; (44) 

 ( ) ( )
( ) ( )tctb

tbt
−

=
ϕφ tgarctg ; (45) 

 ( ) ( ) ( ) ( ) ( ) ( ) 0,
2

;0,
2

<=>−= tcxattcxat πψπψ . (46) 
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Hence on a complex plane we have the real part of the vector ( )txV ,  

 ( ) ( ) ( )[ ] ( ) ( )[ ]tttxvtttxuV ψωφω +−++= cos,cos,Re  (47) 

and its imaginary part 

 ( ) ( ) ( )[ ] ( ) ( )[ ]tttxvtttxuV ψωφω +−++= sin,sin,Im . (48) 

So, the lateral motion of the shaft axis at an arbitrary cross section xX =  
can be described in the fixed coordinate system by the vector 

 ( ) ( )[ ] ( )[ ] ( )VieVVtxV α22 ImRe, += , (49) 
where 

 ( ) ( )
( )V
VV

Re
Imarctg=α . (50) 

CONCLUSIONS 

The vibratory motion of the considered shaft depends inexplicitly on the pa-
rameters of the system and on the initial conditions. In particular, according to Eqs 
(34), (40), (43) and (44) at 0=ϕ  there will be only the free bending vibration 
( )txz ,  of the shaft and the backward whirl of the shaft axis about the line of centers 

of the bearings of the frequency ω (equal to the angular velocity of the shaft) and 
time-dependent amplitude 

 ( ) ( ) ( )tcxatxva =, , (51) 

whereas at 2/πϕ =  there will be only the free bending vibration ( )txy ,  of the shaft 
and the forward whirl of the shaft axis about the line of centers of the bearings of the 
frequency ω and time-dependent amplitude 

 ( ) ( ) ( )tbxatxua =, . (52) 
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D R G A N I A  S W O B O D N E   
A S Y M E T R Y C Z N E G O  W AŁU  

STRESZCZENIE 

Artykuł dotyczy swobodnych drgań pryzmatycznego asymetrycznego wału. Jako przykład 
asymetrii przyjęto wał o przekroju prostokątnym. Założono, że wał jest podparty przegubowo w dwóch 
łożyskach i wiruje ze stałą prędkością kątową oraz że tłumienie w układzie może być pominięte. 
Rozpatrywane są giętne drgania wału wywołane początkowym zakłóceniem jego położenia rów-
nowagi. Do ich opisu przyjęto układ współrzędnych wirujący wraz z wałem oraz nieruchomy układ 
współrzędnych. Zastosowano teorię zginania belek Eulera-Bernoulliego. 

Słowa kluczowe: 
drgania mechaniczne, model ciągły, drgania swobodne. 


