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ABSTRACT 

The paper deals with parametric vibrations of asymmetric shaft subjected to constant 
lateral force. As an example of asymmetry, a uniform shaft of rectangular cross section is chosen. 
During rotation of such a shaft its bending stiffness with respect to fixed coordinate system varies 
with time which leads to vibrations. In order to avoid solving differential equation with time- 
-dependent coefficient, the motion of the shaft is calculated in the co-rotating coordinate system 
and then the solution is transformed to the fixed coordinate system by means of simple kinematic 
relationships. Discrete and continuous undamped models of the vibrating system are considered 
under assumption that the rotational speed of the shaft is constant. It is shown that the geometric 
centers of the cross sections of the shaft perform circular motions in the planes perpendicular to 
the bearing axis so that the shaft is whirling with the frequency twice as high as its angular velocity. 

Keywords:  
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INTRODUCTION 

The subject of this paper are parametric vibrations of shafts the cross sec-
tions thereof are asymmetric. In particular, it refers to uniform shafts of non-circular 
cross sections (e.g. to shafts of rectangular cross sections), but also to shafts with  
a lack of circular symmetry of bending stiffness in some segments, caused by non- 
-homogeneous material, casting defects, technological cuts (grooves, key beds, 
splineways), misuse and fatigue damages (indentations, cracks), etc. During rotation 
of such shafts their bending stiffness with respect to a fixed coordinate system varies 
with time which may lead to vibrations [1, 2]. For example, the constrained motion 
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(limited mechanically to vertical vibration) of a mass mounted on a shaft of rectangular 
cross section is governed by Mathieu equation [3] of known solution [4]. However, 
in the general case of linear differential equations with time-dependent coefficients 
their solutions are not known [5] and numerical, graphical or approximate methods 
in vibration analysis have to be applied [6]. 

The present paper is concerned with vibration of an asymmetric shaft loaded 
by a lateral force of constant magnitude and direction. As an example of asymmetry, 
a uniform shaft of rectangular cross section is chosen. In order to avoid solving dif-
ferential equation with time-dependent coefficient, the motion of the shaft is calcu-
lated in the co-rotating coordinate system and then the solution is transformed to the 
fixed coordinate system by means of simple kinematic relations. Discrete and con-
tinuous undamped models of the vibrating system are considered under assumptions 
that the shaft is simply supported (pinned) in bearings at the ends and that the 
steady-state angular velocity of the shaft, ω , is constant. Other models can be found, 
for example, in [7, 8] where the influence of bearing damping on stability of asym-
metric shafts supported by isotropic bearings are considered, in [9] where a shaft 
crack is distinguished from other rotating asymmetries or in [10–13] where the vi-
brations of a shaft carrying an asymmetrical rotor are analysed. 

ANALYSIS OF THE DISCRETE MODEL 

Consider a uniform shaft of length l subjected to the vertical force F at the 
middle. In this Section we shall assume that the mass forces of the shaft are negligible 
in comparison with the spring forces of the shaft. We also assume that the cross 
section of the shaft has two axes of symmetry, lying on the principal axes of inertia 
of the cross section, y′ and z′ (fig. 1). We shall use the fixed coordinate system 
OXYZ and the coordinate system Oxyz rotating with the angular velocity ω, where: 

x,X  — axes lying along the line of centers of the bearings; 
Z,Y  — horizontal and vertical axes; 
z,y  — axes parallel to the axes y′ and z′. 

The shaft is pinned at lxXxX ==== at  and 0 . Let C denote the geometric 
center of the cross section of the shaft at lxX

2
1

==  where the force F is acting. In an  

angular position of the shaft determined by the angle ωt between the axes y and Y, the 
components of the force F on the axes y′ and z′ are Fsinωt and Fcosωt, respectively. 
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Fig. 1. Components of the force F and translation OC of the center C  

in displaced condition of the shaft at lxX
2
1

==  

Source: own study. 
 

Denoting yk  and zk  the coefficients of bending stiffness of the shaft at lxX
2
1

==  

in the directions y  and z , the equations of motion of the center C in the rotating coor-
dinate system can be written as 

 ( ) ( ) tFtzk,tFtyk zy ωω cossin == . (1) 

Hence 
 ( ) ( ) tctz,taty ωω cossin == , (2) 
where 
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In Eqs (3) E is the Young’s modulus and 

 
1212

33 hbI,bhI 'z'y ==  (4) 

are the axial moments of inertia of the cross section of the shaft. 
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With the aid of Eqs (2) it is easy to describe the motion of the cross section of 
the shaft at the middle. For example, the resultant translation OC of the geometric center C 

( )[ ] ( )[ ]22 tZtYOC +=  

can be now calculated as (see fig. 1) 

 ( )[ ] ( )[ ] ( )[ ]tcos2
2
1 222222 ωcacatztyOC −−+=+= . (5) 

The angular displacement α of the line OC and the velocity 
dt
dα

=Ω  of its 

angular oscillation are determined by the coordinates of the center C. Hereunder 
these coordinates will be calculated in the fixed coordinate system. For this purpose 
use will be made of the kinematic relationships following from fig. 1 

 
( ) ( ) ( )
( ) ( ) ( ) ttzttytZ

ttzttytY
ωω
ωω

cossin
sincos

+=
−=

. (6) 

Substitution of Eqs (2) into Eqs (6) yields 

 
( )
( ) tADtZ

tAtY
ω

ω
cos2

2sin
−=

=
, (7) 

where 

 ( ) ( )caDcaA +=−=
2
1,

2
1 . (8) 

Eqs (7) describe horizontal and vertical components of the translation of the 
geometric center of the cross section of the shaft at the middle, which result in circu-
lar motion of this center and whirling of the shaft with angular velocity twice as high 
as the angular velocity of the shaft. The radius of the circle is given by 

 caA −=
2
1  (9) 

and the coordinates of its centre are 

 ( )caDZ,Y,lX +====
2
10

2
1 . (10) 

Thus the extreme vertical deflections of the shaft axis amount to 

 ( )[ ]cacaADZ −±+=±=
2
1 . (11) 
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As to the angular oscillation of the line OC, the extreme values of the angle 
α are ±αa, where 

 
ca
caar

D
Aara +

−
=≅ ctgctgα . (12) 

ANALYSIS OF THE CONTINUOUS MODEL 

Generally, the information obtained from a discrete model of a system may 
not be as accurate as that obtained from a continuous model. In particular, the model 
analyzed in the foregoing does not include mass forces so that Eqs (2) can not reveal any 
resonance phenomena. However, for any beam modeled as a continuous system there 
will be an infinite number of normal modes with one natural frequency associated 
with each normal mode. Therefore in what follows the continuous distribution of the 
mass and elasticity of the shaft will be taken into account with the aid of the Euler- 
-Bernoulli theory of bending of beams. In the considered case, the instantaneous deflec-
tion of the shaft axis will be determined by the coordinates ( ) ( )t,XZt,XY  and  of 
the geometric centers of the cross sections of the shaft in the fixed coordinate system 
or, alternatively, by the coordinates ( ) ( )t,xzt,xy  and  of these centers in the rotating 

coordinate system. Here Xx =  and, analogously to Eqs (6) 

 
( ) ( ) ( )
( ) ( ) ( ) tt,xztt,xyt,xZ

tt,xztt,xyt,xY
ωω
ωω

cossin 
sincos 

+=
−=

. (13) 

According to the Euler-Bernoulli theory, the forced lateral vibration ( )txw ,  
of a uniform beam is governed by equation [5, 6] 

 ( ) ( ) ( )txftx
t
wStx

x
wEI ,,, 2

2

4

4

=
∂
∂

+
∂
∂ ρ , (14) 

where: 
( )t,xf  — external lateral force per unit length of the beam; 

I — axial moment of inertia of the cross section of the beam; 
S — cross-sectional area of the beam; 
ρ — mass density of the beam. 
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The solution of Eq. (14) can be determined using the mode superposition 
principle. For this, the deflection of the beam is assumed as 

 ( ) ( ) ( )∑
∞

=

=
1

,
n

nn tqxWtxw , (15) 

where ( )xWn  is the n-th normal mode function satisfying equation 

 
( ) ( ) ,...2,1;02

4

4

==− nxWS
dx

xWdEI nn
n ρω  (16) 

( )tqn  is the generalized coordinate in the n-th mode, and ωn is the n-th natural fre-

quency of bending vibration of the beam. These frequencies are computed as 

 ( )
21

4
2

/

nn Sl
EIl ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ρ
βω , (17) 

where l is the length of the beam, and the values of lnβ  for a pinned-pinned beam 

are [5, 6] 
 πβ nln = . (18) 

For any combination of the boundary conditions, the normal mode functions 
are orthogonal, that is 

 ( ) ( )∫ ≠==
l

ji jijidxxWxW
0

;,...2,1,;0 . (19) 

For a pinned-pinned beam the normal mode functions are given by 

 ( )
l
xnxxW nn
πβ sinsin == . (20) 

By substituting Eq. (15) into Eq. (14), we obtain 

 ( ) ( ) ( ) ( ) ( )∑ ∑
∞

=

∞

=

=+
1

2

2

1
4

4

n

n

n
nn

n t,xf
dt

tqdxWStq
dx

xWdEI ρ . (21) 

With regard to Eq. (16), Eq. (21) can be written as 

 ( ) ( ) ( ) ( ) ( )∑ ∑
∞

=

∞

=

=+
1

2

2

1

2 ,1
n

n

n
nnnn txf

Sdt
tqdxWtqxW

ρ
ω . (22) 
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By multiplying Eq. (22) throughout by ( )xWn , integrating from O to l, and 
using the orthogonality condition, Eq. (19), one gets 

 ( ) ( ) ( )tQ
kS

tq
dt

tqd
nnn

n

ρ
ω 12

2

2

=+ , (23) 

where ( )tQn  is called the generalized force corresponding to ( )tqn , calculated as 

 ( ) ( ) ( )∫=
l

o
nn dxxWtxftQ ,  (24) 

and the constant k is given by 

 ( )∫=
l

o
n dxxWk 2 . (25) 

The solution of Eq. (23) can be expressed as 

 ( ) ( ) ( ) ττωτ
ωρ

ωω dtQ
Sk

tBtAtq
t

O
nn

n
nnnnn ∫ −++= sin1sincos , (26) 

where the first two terms on the right-hand side of Eq. (26) represent the free vibra-
tion resulting from initial conditions and the third term denotes the steady-state vi-
bration resulting from the forcing function ( ).t,xf  If a harmonic force 

 ( ) tft,xf o ωsin=  (27) 

is applied at ,xx o=  the generalized force becomes [6, 14] 

 ( ) ( ) t
l
xnfxdxt,xftQ o

o

l

O
nn ωπβ sinsinsin == ∫ . (28) 

We confine ourselves to the steady-state solution of Eq. (23) 

 ( ) ( ) ( ) ττωτ
ωρ

dtQ
Sk

tq
t

O
nn

n
n ∫ −= sin1 , (29) 

where, by Eqs (20) and (25), 

 ∫ ==
l

O
n lxdxk

2
1sin2β . (30) 

The solution of Eq. (29) reads 

 ( ) ( ) t
l
xn

Sl
ftq o

n

o
n ωπ

ωωρ
sinsin2

22 −
= . (31) 
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Thus the response of the beam, Eq. (15), becomes 

 ( ) ∑
∞

= −
=

1
22 sinxnsinsin12,

n

o

n

o t
ll

xn
lS

ftxw ωππ
ωωρ

. (32) 

In view of the shaft with rectangular cross section, in the first step it is con-
venient to resolve its deflection ( )txw ,  into the two components ( )t,xy  and ( ).t,xz  
Then, instead of Eq. (14), we obtain the following equations 

 

( ) ( )
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z
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∂
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∂

ωρ

ωρ

, (33) 

where 'z'y II  and  are given by Eqs (4). The forces tFtF ωω cos and sin  in Eqs (33) 

are acting on the rotating shaft at lxxo 2
1

==  in the directions y and z, and its re-

sponse, by Eq. (32), reads 
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 (34) 

According to Eqs (17) and (18), natural frequencies of bending vibrations of 
the shaft in the directions y and z become, respectively,  
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That angular velocity of the shaft which equals one of the frequencies (35) 
will be called a critical speed of the shaft. 
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Denoting 

 
( ) ( )
( ) ( ) l

xnn
Sl

Fxz

l
xnn

Sl
Fxy

zn
n

yn
n

ππ
ωωρ

ππ
ωωρ

sin
2

sin2

sin
2

sin2

22

22

−
=

−
=

. (36) 

Eqs (34) can be rewritten as 

 
( ) ( )
( ) ( ) txct,xz

txat,xy
ω
ω

cos
sin

=
=

, (37) 

where 
 ( ) ( ) ( ) ( ) ,...,nxzxcxyxa

n
n

n
n 31;, === ∑∑  (38) 

The next step will be to transform the solutions (37) to the fixed coordinate 
system. Making use of Eqs (13) and (37) one gets 

            
( ) ( )
( ) ( ) ( ) txAxD

xAt,xY
ω

ω
2costx,Z

tsin2
−=

=
 

 (39) 
 (40) 

where 

 ( ) ( ) ( )[ ]xcxaxA −=
2
1 ; (41) 

 ( ) ( ) ( )[ ]xcxaxD +=
2
1 . (42) 

The vertical deflection of the shaft axis, Eq. (40), is the sum of the invari-
able in time quantity ( )xD  and 

 ( ) ( ) txAt,x'Z ω2cos−= . (43) 

By defining a complex quantity ( )t,xV  as 

 ( ) ( ) ( )t,x'iZt,xYt,xV += , (44) 

where ( ) 211 /i −=  and by adding Eq.(39) to Eq. (43) multiplied by i, we obtain  
a single equation of lateral motion of the shaft axis 

 ( ) ( )( )titxiAt,xV ωω 2sin2cos +−=  (45) 

or, using a vector notation, 
 ( ) ( ) tiexvtxV ω2, = . (46) 
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The vector ( )xv  represents a complex number 

 ( ) ( )[ ]xAixv −+= 0 . (47) 

The modulus ( )xv  and argument Θ of the vector ( )xv  are 

 ( ) ( )[ ] ( )xAxAxv =−+= 220 ; (48) 

 ( ) ( ) 0for  
2

,0for
2

<=Θ>−=Θ xAxA ππ
. (49) 

Hence on a complex plane we have 

 ( ) ( ) ( )22 /tiexAt,xV πω ±= , (50) 

where 2ω denotes the circular frequency of rotation of the vector ( )t,xV  in the 
same direction as that of the shaft. It means that each point of the shaft axis performs 
a circular motion which presents a forward whirl of the shaft axis of the amplitude 
( )xA  about the curved axis of equation (42) and of the frequency two times higher 

than the angular velocity of the shaft. Note that the whirl axis is lying on the plane 
made by the line of centers of the bearings and by the line of action of the force F, 
i.e. on the vertical plane XZ, and that its distance from the line of centers of the bear-
ings is given by Eq. (42). In particular, at the middle of the shaft the whirl amplitude 
and the distance in question are 

 ,...,n
Sl
FlA

n znyn

31;11
2
1

2222 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−
=⎟

⎠
⎞

⎜
⎝
⎛ ∑ ωωωωρ

; (51) 

 ,...,n
Sl
FlD

n znyn

31;11
2
1

2222 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

−
=⎟

⎠
⎞

⎜
⎝
⎛ ∑ ωωωωρ

 (52) 

SUMMARY 

1. Under constant lateral load, the shaft of rectangular cross section is whirling. 
2. For a constant rotational speed of the shaft, each point of the shaft axis performs 

a circular motion of constant radius about a fixed point. 
3. The circular frequency of the whirl is two times higher that the angular velocity 

of the shaft. 
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4. There is an infinite number of natural frequencies of bending vibrations of the 
shaft which correspond to the critical speeds of the shaft. The closer is the angular 
velocity of the shaft to any of its critical speeds, the larger is the whirl amplitude 
and the more significant is the distance of the whirl axis from the line of centers 
of the bearings. 

5. The advantage of the fixed coordinate system is that it gives the simplest form of 
the rotor dynamics equations in most situations. There are, however, cases that are 
best analyzed in a coordinate system whose axes follow the rotating shaft. This 
is particularly true when the rotor is not axisymmetric [15]. The presented above 
approach to the considered problem is a simple example of it. 
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D R G A N I A  K OŁO W E   
A S Y M E T R Y C Z N E G O  W AŁU   

P R Z Y  S T AŁE J  S I L E  P O P R Z E C Z N E J  

STRESZCZENIE 

Artykuł dotyczy parametrycznych drgań asymetrycznego wału obciążonego stałą siłą 
poprzeczną. Jako przykład asymetrii przyjęto pryzmatyczny wał o przekroju prostokątnym. W czasie 
ruchu obrotowego takiego wału jego sztywność giętna względem nieruchomego układu współ-
rzędnych zmienia się w czasie, co prowadzi do drgań. Dla uniknięcia rozwiązywania równania 
różniczkowego o współczynniku zależnym od czasu wyznaczono ruch wału w wirującym wraz  
z wałem układzie współrzędnych, a następnie rozwiązanie przetransformowano do nieruchomego 
układu współrzędnych za pomocą prostych kinematycznych zależności. Rozpatrywany jest dys-
kretny i ciągły model układu zachowawczego przy założeniu, że prędkość obrotowa wału jest stała. 
Wykazano, że geometryczne środki przekrojów poprzecznych wału poruszają się po okręgach  
w płaszczyznach prostopadłych do osi łożysk, tak że wał wykonuje drgania kołowe o częstości 
dwukrotnie wyższej od jego prędkości kątowej. 

Słowa kluczowe: 
drgania mechaniczne, model dyskretny, model ciągły, wzbudzenie parametryczne. 


