
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ
ROK LI NR 1 (180) 2010

 51

T o m a s z P r a c z y k
A k a d e m i a M a r y n a r k i W o j e n n e j

P R O P E R T I E S O F A S S E M B L E R E N C O D I N G

ABSTRACT

Assembler Encoding is a new neuro-evolutionary method. In the paper, characterization
of the method is given. To characterize Assembler Encoding, the following properties were taken
into consideration: Completeness, Closure, Compactness, Scalability, Multiplicity, Ontogenetic
Plasticity, Modularity, and Redundancy.

Keywords:
evolutionary neural networks.

INTRODUCTION

Artificial Neural Networks (ANNs) are created by means of different techniques.
One of them are Genetic Algorithms (GAs). GA processes a population of genotypes
that typically encode one phenotype, although encoding several phenotypes is also
possible. In the neuro-evolution, genotypes are encodings of corresponding ANNs
(phenotypes). The evolutionary procedure involves selecting genotypes (encoded
ANNs) for reproduction based on their fitness, and then by introducing genetically
changed offspring into a next population. Repeating the whole procedure over many
generations causes the population of encoded ANNs to gradually evolve into indi-
viduals corresponding to high fitness phenotypes (ANNs).

In principle, all the existing ANN encoding methods can be divided into two
main classes, i.e. direct encodings and indirect encodings. In the direct encodings,
all the information necessary to create ANN is directly stored in chromosomes.
Thus, to encode larger ANNs larger chromosomes are necessary, which is the main
drawback of the direct encodings. In the indirect encodings, chromosomes are recipes
how to create ANN. Such encodings can be used to create larger ANNs by means
of relatively short chromosomes.

Tomasz Praczyk

52 Zeszyty Naukowe AMW

The paper presents a new indirect method to encode ANNs. The method is called
Assembler Encoding (AE). AE originates from the cellular [2] and edge encoding [3],
although, it also has features common with Linear Genetic Programming presented,
among other things, in [5]. AE represents ANN in the form of a program called
Assembler Encoding Program (AEP). The structure of AEP is similar to the structure
of a simple assembler program. AEPs are formed by means of GAs. The task of each
AEP is to create Network Definition Matrix (NDM) which stores all the information
necessary to create ANN. In AE, the process of ANN construction consists of three
stages. First, GA is used to produce AEPs. Next, each AEP creates and fills up NDM.
Then, the matrix is transformed into ANN.

In the paper, characterization of AE is given. The description of the method
takes into consideration the following properties: Completeness, Closure, Compactness,
Scalability, Multiplicity, Ontogenetic Plasticity, Modularity, and Redundancy. All the
properties specified above were proposed in [1].

FUNDAMENTALS OF AE

In AE [7], [8], [9] ANN is represented in the form of AEP. AEP is composed
of a part including operations and a part including data. The task of AEP is to create
and to fill in NDM with values. To this end, AEP uses the operations. The operations are
run in turn. When working the operations can use data located at the end of AEP.
Once the last operation ends its work the process of creating NDM is completed and
the matrix is transformed into ANN (fig. 1).

Fig. 1. Diagram of AE

Properties of Assembler Encoding

1 (180) 2010 53

AEPs can use various operations. The main task of most of operations is
to modify NDM. The modification can involve a single element of NDM or group
of elements. Fig. 2 presents example operation used in AE.

CHGC0(p0,p1,p2,*)
{
column=(abs(p0)+R2)mod NDM.height;
numberOfIterations=abs(p2)mod NDM.width;
for(i=0;i<=numberOfIterations;i++)

{
row=(i+R1)mod NDM.width;
NDM[row,column]=D[(abs(p1)+i)mod D.length]/Max_value;
}

}

Fig. 2. CHGC0 operation changing a part of column of NDM:
D[i] — ith data in AEP, D.length — the number of memory cells, Max_value — scaling value

CHGC0 (fig. 2) modifies elements of NDM located in a column indicated

by parameter p0 and the register R2. The number of elements being updated is stored
in a parameter p2. An index of the first element being updated is located in the register
R1. To update elements of NDM CHGC0 uses data from AEP. An index to a memory
cell including the first data used by CHGC0 is stored in p1.

Once AEP finishes its work the process of transforming NDM into ANN is
started. To make it possible to construct ANN based on NDM the latter has to
include all the information necessary to create ANN. To create the same skeleton
of ANN, i.e. ANN without determined weights of interneuron connections, NDM can
take the form of the classical connectivity matrix (CM) [4], i.e. a square, binary matrix
of a number of rows and columns equal a number of neurons. The value ‘1’ in ith column
and jth row of such a matrix means a connection between ith neuron and jth neuron. In turn,
the value ‘0’ means lack of the connection between these neurons. When the purpose
is to create complete ANN with determined values of weights, types of neurons, parame-
ters of neurons then NDM should take the form of a real valued variety of CM with
extra columns or rows containing definitions of individual neurons.

In AE, the evolution of AEPs proceeds according to a scheme proposed by
Potter and De Jong [6]. The scheme assumes a division of evolutionarily created solu-
tion into parts. Each part evolves in a separate population. The complete solution is
formed from selected representatives of each population. To use the scheme above in
relation to AEPs it is necessary to divide them into parts. For AEPs the division is
natural. The operations and data make up natural parts of AEPs. Since the evolu-
tionary scheme chosen assumes evolution of each part in a separate population AEP

Tomasz Praczyk

54 Zeszyty Naukowe AMW

consisting of n operations and a sequence of data evolves in n populations with
operations and one population with data (fig. 3).

During the evolution AEPs expand gradually. Initially, all AEPs include one
operation and a sequence of data. The operations and the data come from two different
populations. When the evolution stagnates, i.e. lack of progress in fitness of generated
solutions is observed over some period, a set of the populations containing the
operations is enlarged by one population. This procedure extends all AEPs created
by one operation.

Fig. 3. Evolution in AE for n = 3

PROPERTIES OF AE

To start characterization of AE, first a few definitions have to be presented.

G — the space of genotypes representable in the encoding scheme, i.e. in the scheme
used to encode an ANN into a genotype. In AE, G is the set of all possible AEPs.

()EgDp ,= — the decoding procedure that produces the phenotype p , i.e. ANN,
corresponding to the genotype g under the influence of the environment E . D may
be stochastic, i.e. it can generate different phenotypes p for the genotype g .

P — the space of all phenotypes (ANN) that can be constructed by means of the
encoding scheme:

 ()EgDpGgPp ,=∈∃∈∀ . (1)

pG — the set of genotypes representing the phenotype p :

 ()EgDpGg p ,=∈∀ . (2)

Properties of Assembler Encoding

1 (180) 2010 55

S — the set of ANNs that satisfy a desired performance criterion.

A — the set of acceptable ANNs (e.g. feed-forward ANNs, two factors can influence
the acceptance of ANN: the number of input and output neurons and the existence
of feedback connections).

P r o p e r t y 1 (C o m p l e t e n e s s)

An encoding scheme is complete with respect to the set H if any element of the set
can be encoded, i.e. if:

 ()EgDsGgHs ,=∈∃∈∀ . (3)

Proposition 1 AE is complete with respect to the set S .

Because AE can produce any ANN, consequently, it can also generate ANN
from S . In order to produce ANN composed of M neurons, the following AEP can
be used: {M(M+3)*CHG|Data}, i.e. M(M+3) time execution of CHG. In AE, ANN
under consideration is represented in the form of NDM of size M(M+3). Each cell in the
matrix determines either synaptic weight between neurons or the value of a parameter
of a neuron. To fill in the whole NDM with different values the AEP above runs
CHG operation M(M+3) times. Each run fills other cell of NDM with a different
value.

P r o p e r t y 2 (C l o s u r e)

An encoding scheme is completely closed with respect to the set H if every possible
code develops ANN in this set, i.e. if:

 () HEgDGg ∈∈∀ , . (4)

Proposition 2 AE is completely closed with respect to the set A .

In AE, the number of neurons in ANN depends on size of NDM. The first
rows and columns of the basic part of NDM correspond to input neurons while the last
rows and columns correspond to output neurons. The remaining rows and columns
store the information about hidden neurons. In AE, all AEPs created at the same
moment of the evolution act on NDMs of the same size. In the beginning, NDMs are
used of size corresponding to the smallest acceptable ANNs, i.e. ANNs including
only input and output neurons. If all ANNs of minimal acceptable structure, created
within an assumed period of the evolution, cannot accomplish a task, then, in the
next stage of the evolution, all NDMs are augmented to represent ANNs including

Tomasz Praczyk

56 Zeszyty Naukowe AMW

one neuron more. This process is continued to some reasonable limit of the number
of neurons. Given all the process of creating ANNs described above, it is necessary
to state that AE always produces acceptable ANNs in terms of the number of inputs
and outputs.

AE assumes that each operation from AEP can change any element in NDM,
i.e. both the element determining a feedback connection and the element defining
a forward connection. Hence, each NDM produced by means of AE usually repre-
sents recurrent ANN (RANN). The simplest method to obtain feed-forward ANN
(FFANN) is to ignore all feedbacks in NDM. Unfortunately, such solution leads to
the situation in which a part of operations in AEP can be completely or partially
unproductive. In order to avoid such undesirable situation we can force every opera-
tion which acts in the impermissible part of NDM, i.e. in the part defining feedback
connections, to act in the acceptable area. We can use a special projection function
which changes each impermissible address into address indicating the acceptable
place in NDM. Assuming that the bottom fragment of NDM determines FFANN, we
can define the projection function, for example in the following way:

 ()()
()
()

()⎪
⎩

⎪
⎨

⎧

=+
<
>

=
jiji

jiij
jiji

jiFpr

 if ,1
 if,
 if ,

, . (5)

Another method to produce NDMs defining exclusively FFANNs is to assign
low fitness to each AEP generating RANN. As a result, all operations acting in the
part of NDM defining feedbacks have a little chance to survive and once they
emerge in corresponding populations they quickly disappear from them. In conse-
quence, a massive majority of AEPs generated during the evolution solely use op-
erations acting in the part of NDMs responsible for creating ANNs of feed-forward
topology.

Property 3 (Compactness)

The encoding scheme 1ES is more compact than the encoding scheme 2ES with
respect to the set H if the scheme 1ES can encode each ANN from the set H by
means of a shorter genotype than the scheme 2ES , i.e. if:

 gdGdGgHp pp <∈∃∈∀∈∀ 12 , (6)

where g and d denote size of computer memory necessary to store genotypes g

and d , respectively.

Properties of Assembler Encoding

1 (180) 2010 57

Proposition 3 AE is more compact than CM with respect to the set of fully connected
recurrent ANNs composed of at least eight neurons.

Let us consider the case with a fully connected RANN composed of M neurons.
Furthermore, let us assume that each connection in the ANN is described by a different
weight. To represent such ANN and generally to represent each RANN consisting
of M neurons CM always requires (M+3)M elements (additional three columns corre-
spond to the bias, the parameter and the type of each neuron). It seems that one of the
shortest AEPs which may be used to fill in the whole (M+3)M NDM with different values,
is AEP of the following construction: {CHGR0|(M-1)*{CHGR3, CHGR2}|Data}
(a description of CHGR0, CHGR3 and CHGR2 is included in Appendix 1 at the end
of the paper). The program mentioned performs in the following manner. First,
CHGR0 modifies a row of NDM using for this purpose data from memory. To execute
this operation, 5 cells for the operation itself (one cell for code of the operation and the
remaining four cells for arguments) and additionally M+3 cells in the data part of AEP
are needed. In the next step, CHGR3 and CHGR2 are executed M-1 times. Each execution
of the operations involves a different destination and source row. The task of CHGR3 is
to transform elements from the most recently updated row to other blank row. CHGR2
adds a value to all elements of the row updated by means of CHGR3. To implement
M-1 time execution of the two mentioned operations, 10(M-1) cells are required. All in
all, the AEP presented above needs 5+M+3+10(M-1)=11M-2 cells.

Comparing values (M+3)M and 11M-2 it is apparent that CM is a more
compact representation than the AEP described above for each ANN consisting at
most of 7 neurons. All the time, the fully connected RANN with all weights different
is assumed. Eight neuron ANN is the smallest network for which the program de-
scribed above is the shorter representation than CM. Generally, in the case considered
above, the more neurons in ANN is the greater chance that AEPs to be more compact
than CMs is.

Proposition 4 AE is more compact than CM with respect to the set of two and more
neuron ANNs in which all weights have the same value and all connections are
directed to one output neuron (the output neuron is also connected with oneself).

The ANN described above can be represented in the form of (M+3)M CM in
which the only elements unequal to zero are elements located in a column corresponding
to the output neuron. According to the assumptions made above all elements in the
column mentioned have the same value. To create such matrix, AE requires only one
operation, e.g. CHGC0 (fig. 2), and one piece of data. All in all, it is 6 cells, i.e. 5 cells
for the operation and 1 cell for data. Comparing values (M+3)M and 6 it is necessary to

Tomasz Praczyk

58 Zeszyty Naukowe AMW

state that in the currently considered case AE is able to produce shorter representations
(AEPs) than CM already for ANNs consisting of 2 neurons.

Generally, it can be stated that smaller, fully connected ANNs of varied val-
ues of weights are represented in more compact form by means of CM than by
means of AE. In turn, AE is more compact scheme than CM for sparsely connected
ANNs, for modular ANNs, and for ANNs of greater number of neurons.

P r o p e r t y 4 (S c a l a b i l i t y)

The encoding scheme 1ES scales better than the encoding scheme 2ES if enlargement
of ANN by one element (neuron, connection) entails smaller growth of size of a genotype
in the case of the scheme 1ES than in the case of the scheme 2ES .

Proposition 5 AE scales better than CM in the case of adding a neuron to ANN.

In CM, the addition of a neuron to ANN entails increase in size of a genotype
to (M+4)(M+1) cells (enlarged CM is greater by 2M+4 elements). To accomplish the
same effect, AE does not require additional operations and data. In AE, ANNs can
expand automatically after some assumed period of stagnation in the evolution
(gradual growth of ANNs described above).

Proposition 6 The scalability of AE and CM in the case of adding a connection to
ANN is on the same level.

In the case of the addition of an interneuron connection, neither CM nor AEPs
have to be augmented. To add a connection, it suffices to change a single element of CM.
The size of the matrix does not have to be changed. In AE, the procedure of adding
a connection can, for example, consists in increasing parameter p2 in CHGC0 (fig. 2)
by one. This way, the operation can modify one element of NDM more.

P r o p e r t y 5 (G e n o t y p i c M u l t i p l i c i t y)

The encoding scheme ES exhibits a genotypic multiplicity if many different genotypes
can represent the same ANN, i.e if:

 ()(){ } 1, >=∈∈∃ EgDpGgPp . (7)

Proposition 7 AE exhibits the genotypic multiplicity.

AE shows genotypic multiplicity because two different AEPs can create the
same ANN. For example, executing a sequence of CHG operations may yield the same
result as using a single CHGC0 operation.

Properties of Assembler Encoding

1 (180) 2010 59

P r o p e r t y 6 (P h e n o t y p i c M u l t i p l i c i t y)

The encoding scheme ES exhibits a phenotypic multiplicity if one genotype can represent
many different ANNs (phenotypes), i.e. if:

 () () 2121221121 ,,, ppggEgDpEgDpGgg ≠∧=∧=∧=∈∃ . (8)

Proposition 8 AE does not exhibit the phenotypic multiplicity.

AE is not phenotypically multiple because AEPs perform in a deterministic
manner (no random factors have influence on behavior of AEPs; decoding proce-
dure D is deterministic). They change NDMs always in the same way. One and the
same AEP always produces the same NDM and in consequence the same ANN.

P r o p e r t y 7 (O n t o g e n e t i c P l a s t i c i t y)

The encoding scheme ES exhibits an ontogenetic plasticity if determining the phenotype
(ANN) corresponding to a given genotype is influenced by the environment.

Proposition 9 AE exhibits the ontogenetic plasticity.

The environment can influence the shape of ANN in two situations. The first
of them is a decoding process of ANN. The second situation is a learning process
of ANN. With regard to the decoding process, in AE, it is completely independent
on the environment. To produce ANN, AE merely uses the information that is included
in AEP. No other factors have the influence on the process of decoding ANN. In AE,
the only method that enables the environment to influence the shape of ANN is to
apply the learning process. Hebbian learning is an example of learning used in AE [10].
In the Hebbian learning, the architecture of ANN is variable. It undergoes changes
according to Hebbian rules assigned by NDM to each interneuron connection. The
Hebbian rules adjust weights of interneuron connections to input signals coming
from the environment.

P r o p e r t y 8 (M o d u l a r i t y)

ANN1 is modular if it incorporates several instances of a sub-network ANN2 and the
information necessary to create ANN2 occurs in a genotype corresponding to ANN1
only once.

Proposition 10 AE has a potential to create modular ANNs.

To create modular ANNs, AE can use solutions described in [9] (e.g. repeated
use of data by various operations). Example of AEP creating modular ANN is pre-
sented in fig 4.

Tomasz Praczyk

60 Zeszyty Naukowe AMW

b)

Operations:
0000001 0110110 1100100 1010011 1110111
0011010 1010011 0010110 1010111 0011101
Data:
0010110 0001101 0100001 0111011 1001110
0101100 1010100 1101001 0001001 1010101
1111000 0000000 0001110 0110110 0001001
0010010

a)

0 0 0 0 0 0 0 0 0 -0.15873 0.52381 0.428571 -0.666667 0.206349
0 0 0 0 0 0 0 0 0 -0.587302 0.873016 0.571429 -0.111111 0
0 0 0 0 0 0 0 0 0 0.571429 -0.444444 0.285714 0 0
0 0 0 0 0 0 0 0 0 -0.666667 0.206349 0.698413 0.444444 0
0 0 0 0 -0.793651 -0.793651 -0.793651 0 0 -0.111111 -0.15873 0.52381 0.428571 0
0 0 0 0 0 0 0 0 0 0.285714 0 -0.587302 0.873016 0.571429
0 0 0 0 0 0 0 0 0 0.698413 0.444444 0.571429 -0.444444 0.285714
0 0 0 0 0 0 0 0 0 0.52381 0.428571 -0.666667 0.206349 0.698413
0 0 0 0 0 0 0 0 0 0.873016 0.571429 -0.111111 -0.15873 0.52381
0 0 0 0 0 0 0 0 0 -0.444444 0.285714 0 -0.587302 0.873016
0 0 0 0 0 0 0 0 0 0.206349 0.698413 0.444444 0.571429 -0.444444

Fig. 4 (a) Example of AEP representing modular ANN, (b) NDM generated by AEP presented
in point (a) (the number of integer valued genes in AEP = 26; the number of elements different

from 0 located above the diagonal of NDM = 64; NDM presented in point (b) represents
FFANN and only elements above the diagonal decide about the architecture of ANN)

P r o p e r t y 9 (G e n o t y p i c R e d u n d a n c y)

The encoding scheme ES exhibits a genotypic redundancy if genotypes can include
redundant genes.

Proposition 11 AE does not exhibit the genotypic redundancy.

AE does not exhibit the genotypic redundancy since AEPs do not contain
redundant operations and data.

P r o p e r t y 1 0 (D e c o d i n g R e d u n d a n c y)

The encoding scheme ES exhibits a decoding redundancy if the decoding process
can be repeated many times.

Proposition 12 AE does not exhibit the decoding redundancy.

AE does not exhibit the decoding redundancy since the decoding process is
performed in AE only once. Initially, AEP fills up NDM which is next transformed
into ANN. Once ANN is created, the decoding process is stopped.

P r o p e r t y 1 1 (P h e n o t y p i c R e d u n d a n c y)

The encoding scheme ES exhibits a phenotypic redundancy if ANN can include redundant
neurons, connections or sub-networks.

Proposition 13 AE does not exhibit the phenotypic redundancy.

AE does not exhibit the phenotypic redundancy since ANNs generated by
AEPs do not contain redundant elements. In AE, ANNs are formed based on the infor-
mation from NDMs which do not contain additional rows and columns for redundant
connections or neurons.

Properties of Assembler Encoding

1 (180) 2010 61

SUMMARY

In the paper, characterization of AE was given. To characterize AE, the following
properties were determined: Completeness, Closure, Compactness, Scalability, Multi-
plicity, Ontogenetic Plasticity, Modularity, and Redundancy. As a result of analysis
made in the paper it appeared that:

― AE is complete with respect to the set of all ANNs that satisfy a desired per-
formance criterion;

― AE is completely closed with respect to the set of all ANNs with acceptable
architecture;

― AE is more compact than CM with respect to the set of fully connected recurrent
ANNs composed of at least eight neurons;

― AE is more compact than CM with respect to the set of two and more neuron
ANNs in which all synaptic weights have the same value and all connections
are directed to one output neuron;

― AE scales better than CM in the case of adding a neuron to ANN;
― The scalability of AE and CM in the case of adding a connection to ANN is on

the same level;
― AE exhibits the genotypic multiplicity;
― AE does not exhibit the phenotypic multiplicity;
― AE exhibits the ontogenetic plasticity;
― AE has a potential to create modular ANNs;
― AE does not exhibit the genotypic redundancy;
― AE does not exhibit the decoding redundancy;
― AE does not exhibit the phenotypic redundancy.

The following main conclusions spring from the analysis made in the paper:

1. Completeness and Closure of AE make it a tool which can be used to solve any
problem solvable by means of ANNs.

2. AE seems to be more suited method for constructing larger ANNs than CM. In turn,
CM appears to be a better solution when creating smaller ANNs. This results
from comparing Scalability and Compactness of both methods.

3. Modularity is a next feature of AE which makes it an ideal tool to create ANNs
of larger size.

4. A next significant characteristic of AE is its plasticity. It makes it possible to
combine AE with different learning methods in the process of ANN construction.

Tomasz Praczyk

62 Zeszyty Naukowe AMW

APPENDIX

CHG — Update of an element. Both the new value and address of the element are
located in parameters of the operation.

CHGR0 — Update of a certain number of elements in a row. Index of the row, index
of the first element in the row to be changed, the number of changed elements and
a pointer to data, where new values of elements are memorized, are located in pa-
rameters of the operation.

CHGCR — Update of a certain number of elements in a row. A new value of every
element is a sum of the operation’s parameter and the current value of this element.
The second parameter of the operation is an index of the row. The third and fourth
parameter of the operation determine the number of changed elements and index
of the first element in the row to be changed, respectively.

CHGCR — A number of elements from one row are transformed to another row.
Both rows are indicated by parameters of the operation. The number of transferred
elements and index of the first element in the row to be transferred are also included
in parameters of the operation.

REFERENCES

[1] Balakrishnan K., Honavar V., Properties of Genetic Representations of Neural
Architectures, Proc. of the World Congress on Neural Networks (WCNN ’95),
1995, pp. 807–813.

[2] Gruau F., Neural Network Synthesis Using Cellular Encoding and the Genetic
Algorithm, PhD Thesis, Ecole Normale Superieure de Lyon, 1994.

[3] Luke S., Spector L., Evolving Graphs and Networks with Edge Encoding:
Preliminary Report, in John R. Koza, ed., Late Breaking Papers at the Genetic
Programming 1996 Conference (Stanford University, CA, USA, Stanford
Bookstore, 1996), pp. 117–124.

[4] Miller G. F., Todd P. M., Hegde S. U., Designing Neural Networks Using
Genetic Algorithms, Proceedings of the Third International Conference on
Genetic Algorithms, 1989, pp. 379–384.

[5] Nordin P., Banzhaf W., Francone F., Efficient Evolution of Machine Code for
{CISC} Architectures using Blocks and Homologous Crossover, Advances in
Genetic Programming III (L. Spector and W. Langdon and U. O’Reilly and
P. Angeline, 1999), pp. 275–299.

Properties of Assembler Encoding

1 (180) 2010 63

[6] Potter M. A., De Jong K. A., Cooperative coevolution: An architecture for
evolving coadapted subcomponents, ‘Evolutionary Computation’, 2000, 8(1),
pp. 1–29.

[7] Praczyk T., Evolving co-adapted subcomponents in Assembler Encoding,
‘International Journal of Applied Mathematics and Computer Science’, 2007,
17(4).

[8] Praczyk T., Procedure application in Assembler Encoding, ‘Archives of Control
Science’, 2007, Vol. 17(LIII), No 1, pp. 71–91.

[9] Praczyk T., Modular Neural Networks in Assembler Encoding, ‘Computa-
tional Methods in Science and Technology’, 2008, 14(1).

[10] Praczyk T., Forming Dynamic, Self-organizing Neural Networks by means
of Assembler Encoding (in review).

WŁA S N OŚC I K O D O W A N I A A S S E M B L E R

STRESZCZENIE

Kodowanie Assembler jest metodą neuro-ewolucyjną. W artykule scharakteryzowano ją,
biorąc pod uwagę następujące własności: kompletność, zamknięcie, kompaktowość, mierzalność,
plastyczność ontogenetyczną, modularność oraz redundancję.

Słowa kluczowe:
ewolucyjne sieci neuronowe.

Recenzent dr hab. inż. Wojciech Jędruch, prof. PG

